Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-28T06:21:09.404Z Has data issue: false hasContentIssue false

Low thermal conductivity oxides

Published online by Cambridge University Press:  09 October 2012

Wei Pan
Affiliation:
State Key Lab of New Ceramics and Fine Processing, Tsinghua University, Beijing, China; panw@mail.tsinghua.edu.cn
Simon R. Phillpot
Affiliation:
Department of Materials Science and Engineering, University of Florida, Gainesville, FL; sphil@mse.ufl.edu
Chunlei Wan
Affiliation:
Graduate School of Engineering, Nagoya University, Nagoya, Japan; chunlei.wan@gmail.com
Aleksandr Chernatynskiy
Affiliation:
Department of Materials Science and Engineering, University of Florida, Gainesville, FL; avtche01@gmail.com
Zhixue Qu
Affiliation:
College of Materials Science and Engineering, Beijing University of Technology, Beijing, China; quzhixue@bjut.edu.cn
Get access

Abstract

Oxides hold great promise as new and improved materials for thermal-barrier coating applications. The rich variety of structures and compositions of the materials in this class, and the ease with which they can be doped, allow the exploration of various mechanisms for lowering thermal conductivity. In this article, we review recent progress in identifying specific oxides with low thermal conductivity from both theoretical and experimental perspectives. We explore the mechanisms of lowering thermal conductivity, such as introducing structural/chemical disorder, increasing material density, increasing the number of atoms in the primitive cell, and exploiting the structural anisotropy. We conclude that further systematic exploration of oxide crystal structures and chemistries are likely to result in even further improved thermal-barrier coatings.

Type
Research Article
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Siegel, R., Spuckler, C.M., Mater. Sci. Eng., A 245, 150 (1998).CrossRefGoogle Scholar
Stecura, S., “Optimization of the NiCrAI-Y/ZrO2-Y2O3 Thermal Barrier System” (NASA Tech. memo, Cleveland, 1985).Google Scholar
Callaway, J., von Baeyer, H.C., Phys. Rev. 120 (4), 1149 (1960).CrossRefGoogle Scholar
Schelling, P.K., Phillpot, S.R., J. Am. Ceram. Soc. 84 (12), 2997 (2001).CrossRefGoogle Scholar
Watanabe, T., Srivilliputhur, S.G., Schelling, P.K., Tulenko, J.S., Sinnott, S.B., Phillpot, S.R., J. Am. Ceram. Soc. 92 (4), 850 (2009).CrossRefGoogle Scholar
Allen, P.B., Feldman, J.L., Bickham, S.R., Philos. Mag. B 79 (11–12), 1715 (1999).CrossRefGoogle Scholar
Lughi, V., Clarke, D.R., Surf. Coat. Technol. 200 (5–6), 1287 (2005).CrossRefGoogle Scholar
Feng, J., Ren, X.R., Wang, X., Zhou, R., Pan, W., Scripta Mater. 66 (1), 41 (2012).CrossRefGoogle Scholar
Rahaman, M.N., Gross, J.R., Dutton, R.E., Wang, H., Acta Mater. 54 (6), 1615 (2006).CrossRefGoogle Scholar
Levi, C.G., Curr. Opin. Solid State Mater. Sci. 8 (1), 77 (2004).CrossRefGoogle Scholar
Raghavan, S., Wang, H., Dinwiddie, R.B., Porter, W.D., Vaβen, R., Stöver, D., Mayo, M.J., J. Am. Ceram. Soc. 87 (3), 431 (2004).CrossRefGoogle Scholar
Raghavan, S., Wang, H., Porter, W.D., Dinwiddie, R.B., Mayo, M.J., Acta Mater. 49 (1), 169 (2001).CrossRefGoogle Scholar
Shen, Y., Leckie, R.M., Levi, C.G., Clarke, D.R., Acta Mater. 58 (13), 4424 (2010).CrossRefGoogle Scholar
Song, X.W., Xie, M., Mu, R., Zhou, F., Jia, G., An, S., Acta Mater. 59 (10), 3895 (2011).CrossRefGoogle Scholar
Jarligo, M.O., Mack, D.E., Mauer, G., Vaβen, R., Stöver, D., J. Therm. Spray Technol. 19 (1–2), 303 (2010).CrossRefGoogle Scholar
Vaβen, R., Jarligo, M.O., Steinke, T., Mack, D.E., Stöver, D., Surf. Coat. Technol. 205 (4), 938 (2010).Google Scholar
Zhu, D.M., Miller, R.A., Int. J. Appl. Ceram. Technol. 1 (1), 86 (2004).CrossRefGoogle Scholar
Vaβen, R., Cao, X.Q., Tietz, F., Basu, D., Stöver, D., J. Am. Ceram. Soc. 83 (8), 2023 (2000).Google Scholar
Wuensch, B.J., Eberman, K.W., J. Miner. 52, 19 (2000).Google Scholar
Schelling, P.K., Phillpot, S.R., Grimes, R.W., Philos. Mag. Lett. 84 (2), 127 (2004).CrossRefGoogle Scholar
Qu, Z., Wan, C., Pan, W., Acta Mater. 60 (6–7), 2939 (2012).CrossRefGoogle Scholar
Wu, J., Wei, X.Z., Padture, N.P., Klemens, P.G., Gell, M., Garcia, E., Miranzo, P., Osendi, M.I., J. Am. Ceram. Soc. 85 (12), 3031 (2002).CrossRefGoogle Scholar
Winter, M.R., Clarke, D.R., J. Am. Ceram. Soc. 90 (2), 533 (2007).CrossRefGoogle Scholar
Xu, Q., Pan, W., Wang, J., Wan, C., Qi, L., Miao, H., Mori, K., Torigoe, T., J. Am. Ceram. Soc. 89 (1), 340 (2006).CrossRefGoogle Scholar
Lehmann, H., Pitzer, D., Pracht, G., Vaβen, R., Stöver, D., J. Am. Ceram. Soc. 86 (8), 1338 (2003).CrossRefGoogle Scholar
Wan, C.L., Qu, Z.X., Du, A., Pan, W., J. Am. Ceram. Soc. 94 (2), 592 (2011).CrossRefGoogle Scholar
Wan, C.L., Zhang, W., Wang, Y., Qu, Z.X., Du, A., Wu, R., Pan, W., Acta Mater. 58 (18), 6166 (2010).CrossRefGoogle Scholar
Mitchell, R.H., Perovskites: Modern and Ancient (Almaz Press, Thunder Bay, 2002).Google Scholar
Ma, W., Mack, D.E., Vaβen, R., Stöver, D., J. Am. Ceram. Soc. 91 (8), 2630 (2008).CrossRefGoogle Scholar
Ma, W., Jarligo, M.O., Pitzer, D., Malzbender, J., Vaβen, R., Stöver, D., J. Therm. Spray Technol. 17 (5–6), 831 (2008).CrossRefGoogle Scholar
Jarligo, M.O., Mack, D.E., Vaβen, R., Stöver, D., J. Therm. Spray Technol. 18 (2), 187 (2009).CrossRefGoogle Scholar
Wan, C., Qu, Z., He, Y., Luan, D., Pan, W., Phys. Rev. Lett. 101 (8), 085901 (2008).CrossRefGoogle Scholar
Wan, C.L., Sparks, T.D., Pan, W., Clarke, D.R., David, R., J. Am. Ceram. Soc. 93 (5), 1457 (2010).CrossRefGoogle Scholar
Chernatynskiy, A., Grimes, R.W., Zurbuchen, M.A., Clarke, D.R., Phillpot, S.R., Appl. Phys. Lett. 95 (16) (2009).CrossRefGoogle Scholar
Shen, Y., Clarke, D.R., Fuierer, P.A., Appl. Phys. Lett. 93 (10) (2008).Google Scholar
Guo, H., Zhang, H., Ma, G., Gong, S., Surf. Coat. Technol. 204 (5), 691 (2009).CrossRefGoogle Scholar
Cao, X.Q., Vaβen, R., Stöver, D., J. Eur. Ceram. Soc. 24 (1), 1 (2004).CrossRefGoogle Scholar
Du, A.B., Wan, C.L., Qu, Z., Pan, W., J. Am. Ceram. Soc. 92 (11), 2687 (2009).CrossRefGoogle Scholar
Du, A.B., Wan, C.L., Qu, Z., Wu, R., Pan, W., J. Am. Ceram. Soc. 93 (9), 2822 (2010).CrossRefGoogle Scholar
Qu, Z.X., Sparks, T.D., Pan, W., Clarke, D.R., Acta Mater. 59 (10), 3841 (2011).CrossRefGoogle Scholar
Vaβen, R., Kerkhof, G., Stöver, D., Mater. Sci. Eng., A 303 (1–2), 100 (2001).Google Scholar
Sodeoka, S., Suzuki, M., Ueno, K.. Sakuramoto, H., Shibata, T., Ando, M., J. Therm. Spray Technol. 6 (3), 361 (1997).CrossRefGoogle Scholar
Cao, X.Q., Vaβen, R., Fischer, W., Tietz, F., Jungen, W., Stöve, D., Adv. Mater. 15 (17), 1438 (2003).CrossRefGoogle Scholar
Qu, Z.X., Wan, C.L., Pan, W., Chem. Mater. 19 (20), 4913 (2007).CrossRefGoogle Scholar