Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-30T23:07:03.206Z Has data issue: false hasContentIssue false

Magnetic Tape: The Challenge of Reaching Hard-Disk-Drive Data Densities on Flexible Media

Published online by Cambridge University Press:  31 January 2011

Get access

Abstract

By the end of 2006, the areal density of magnetic recording on tape will approach that seen in hard disk drives of the early to mid-1990s.These operating conditions are reviewed in relation to the operating conditions deemed necessary for the future of magnetic data storage on tape.What results is a clear set of tasks, encompassing both materials and systems architecture issues, to achieve very high-density data storage on magnetic tape, leading to 10 Tbyte tape cartridge capacities and higher.The key to achieving on tape the areal densities of tens to hundreds of Gbit in.2, common in hard disk drives (HDDs), lies primarily in the properties of the medium itself.As for volumetric density of the storage entity, HDDs and tape cartridges are roughly equivalent.The mechanical dimensional uncertainties that accompany the use of flexible, as opposed to rigid, media means that both the mechanical and magnetic properties of materials play a key role in the future of tape.The need for new architectures to overcome the track placement problem that results from increasing track density on flexible media are reviewed, as well as the “particles in a binder” concept that has served so well as the physical basis of tape media over the past 50 years.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Childers, E.R.Imaino, W.Eaton, J.Jaquette, G.Koeppe, P. and Hellman, D.IBM J.Res. & Dev. 47 (4) (2003) p.471.CrossRefGoogle Scholar
2Charap, S. H.Lu, P.-L. and He, Y.IEEE Trans. Magn. 33 (1997) p.978.CrossRefGoogle Scholar
3Weller, D. and Moser, W.IEEE Trans. Magn. 35 (6) (1999) p.4423.CrossRefGoogle Scholar
4Richard Dee, H. in Proc.Tenth NASAGoddard Space Flight Center Conf. on Mass Storage Systems and Technologies, College Park, Md., NASA/CP-2002-210000 (April 15-18, 2002) p. 109.Google Scholar
5Tsang, C.Chen, M.-M, Yogi, T. and Ju, K.IEEE Trans. Magn. 26 (5) (1990) p.1689.CrossRefGoogle Scholar
6Tsang, Ching, Santini, H.McCown, D.Lo, J., and Lee, R.IEEE Trans. Magn. 32 (1) (1996) p.7.CrossRefGoogle Scholar
7Kanai, H.Okamoto, J.Ohtsuka, Y.Sugawara, T., Koshikawa, J.Toda, J.Uematsu, Y.Shinohara, M. and Mizoshita, Y.IEEE Trans. Magn. 32 (5) (1996) p.3914.Google Scholar
8Tsang, C.Pinarbasi, M.Santini, H.Marinero, E.Arnett, P.Olson, R.Hsiao, R.Williams, M., Payne, R.Wang, R.Moore, J.Gurney, B.Lin, T. and Fontana, R.IEEE Trans. Magn. 35 (2) (1999) p.689.CrossRefGoogle Scholar
9Liu, F.H.Stoev, K.Shi, X.Tong, H.C.Chien, C.Dong, Z.W.Yan, X.Gibbons, M.Funada, S.Liu, Y.Prabhu, P.Dey, S.Schultz, M.Mahotra, S.Lal, B.Kimmal, J., Russak, M. and Kern, P.IEEE Trans. Magn. 36 (5) (2000) p.2140.CrossRefGoogle Scholar
10Stoev, K.Liu, F.Shi, X.Tong, H.Chen, Y.Chien, C.Dong, Z.W.Gibbons, M.Funada, S.Prabhu, P., Nguyen, H.Wachenschwanz, D.Mei, L.Schultz, M.Malhotra, S.Lal, B.Kimmal, J.Russak, M.Talalai, A. and Varlahanov, A.IEEE Trans. Magn. 37 (4) (2000) p.1264.CrossRefGoogle Scholar
11Zhang, Z.Feng, Y. Chang, Clinton, T.Badran, G.Yeh, N.H.Tarnopolsky, G.Girt, E.Munteanu, M., Harkness, S.Richter, H.Nolan, T.Ranjan, R.Hwang, S.Rauch, G.Ghaly, M.Larson, D., Singleton, E.Vas'ko, V., Ho, J.Stageberg, F.Kong, V.Duxstad, K. and Slade, S.IEEE Trans. Magn. 38 (5) (2002) p.1861.CrossRefGoogle Scholar
12Williams, M.L. and Comstock, R.L. in Proc. 17th Annu. AIP Conf. (1971) p.738.Google Scholar
13Mallinson, John, Foundations of Magnetic Recording, 2nd Ed. (Academic Press, New York, 1993) p.116.Google Scholar
14Materials pervasive today are PET (polyethylene teraphthalate) and PEN (polyethylene napthalate) with ARAMID (aromatic polyamide) used in helical-scan drives.Google Scholar
15Sharrock, M.P.IEEE Trans. Magn. 36 (5) (2000) p.2420.CrossRefGoogle Scholar
16Sasaki, Y.Usuki, N.Matsuo, K. and Kishimoto, M.IEEE Trans. Magn. 41 (10) (2005) p.3241.CrossRefGoogle Scholar
17Bai, J. and Wang, Jian-Ping, Dig. IEEE Int. Conf. Magnetics 2005 (4-8 April, 2005) p.655.Google Scholar
18Dee, R.H.IEEE Trans. Magn. 38 (5) (2002) p.1922.CrossRefGoogle Scholar
19Tetsukawa, H.Kondo, M.Soda, Y.Ozue, T.Motohashi, K.Onodera, S. and Kawana, T.IEEE Trans. Magn. 38 (5) (2002) p.1910.CrossRefGoogle Scholar
20Sugawara, T.Yamagishi, M.Mutoh, H.Shimoda, K. and Mizoshita, Y.IEEE Trans. Magn. 29 (6) (1993) p.4021.CrossRefGoogle Scholar
21Kobayashi, M.Ohta, H. and Murata, A.IEEE Trans. Magn. 27 (6) (1991) p.4526.CrossRefGoogle Scholar
22Coutellier, J.Magna, H. and Pirot, X.IEEE Trans. Magn. 28 (5) (1992) p.2653.CrossRefGoogle Scholar
23Maillot, C. and Maurice, F.IEEE Trans. Magn. 28 (5) (1992) p.2656.CrossRefGoogle Scholar