Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-14T21:10:08.202Z Has data issue: false hasContentIssue false

Magnetoelectric magnetic field sensors

Published online by Cambridge University Press:  09 November 2018

Dwight Viehland
Affiliation:
Department of Materials Science and Engineering, Virginia Tech, USA; dviehlan@vt.edu
Manfred Wuttig
Affiliation:
University of Maryland, USA; wuttig@umd.edu
Jeffrey McCord
Affiliation:
Institute for Materials Science, Kiel University, Germany; jmc@tf.uni-kiel.de
Eckhard Quandt
Affiliation:
Kiel University, Germany; eq@tf.uni-kiel.de
Get access

Abstract

Highly sensitive magnetic field sensors using magnetoelectric (ME) bulk and thin-film composites consisting of magnetostrictive and piezoelectric phases are discussed. Examples include PZT (Pb(ZrxTi1–x)O3) fibers and AlN as the piezoelectric component and amorphous magnetostrictive material, respectively, or their multilayers. Additionally, self-organized ME composites are discussed. These ME sensors offer a passive (consuming little to no power) nature, high sensitivities, large effect enhancements at mechanical resonances, and large linear dynamic ranges. At mechanical resonance, limits of detection in the fT/Hz1/2 range can be achieved. Below the mechanical resonance frequency, the sensitivity can be enhanced through frequency conversion using alternating current magnetic or electric fields or by using magnetic field-induced changes of the elastic properties, the delta-E effect, where E represents Young’s modulus. Noise floors of about 1–100 pT/Hz1/2 at a frequency of f = 1 Hz can be obtained depending on the sensor size and the operational mode. For applications in unshielded environments, approaches to suppress acoustic and vibrational cross-sensitivities are presented.

Type
Materials for Strain-Mediated Magnetoelectric Systems
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Harshé, G., Dougherty, J.P., Newnham, R.E., Int. J. Appl. Electromagn. Mater. 4, 145 (1993).Google Scholar
van Suchtelen, J., Philips Res. Rep. 27, 28 (1972).Google Scholar
Boomgaard, J.V.D., van Run, A.M.J.G., Suchtelen, J.V., Ferroelectrics 10, 295 (1976).CrossRefGoogle Scholar
Boomgaard, J.V.D., van Run, A.M.J.G., Suchtelen, J.V., Ferroelectrics 14, 727 (1976).CrossRefGoogle Scholar
Bichurin, M., Viehland, D., Magnetoelectricity in Composites (Pan Stanford, Singapore, 2012).Google Scholar
Nan, C., Bichurin, M., Dong, S., Viehland, D., Srinivasan, G., J. Appl. Phys. 103, 031101 (2008).CrossRefGoogle Scholar
Gao, J., Shen, L., Wang, Y., Gray, D., Li, J.F., Viehland, D., J. Appl. Phys. 109, 7 (2011).Google Scholar
Dong, S., Cheng, J., Li, J.F., Viehland, D., Appl. Phys. Lett. 83, 4812 (2003).CrossRefGoogle Scholar
Leung, C., Zhuang, X., Xu, J., Srinivasan, G., Li, J., Viehland, D., Appl. Phys. Lett. 109, 20 (2016).CrossRefGoogle Scholar
Gao, J., Hasanyan, D., Shen, Y., Wang, Y., Li, J.F., Viehland, D., J. Appl. Phys. 112, 10 (2012).Google Scholar
Wang, Y., Li, J.F., Viehland, D., Mater. Today 17, 269 (2014).CrossRefGoogle Scholar
Dong, S., Zhai, J., Xing, Z., Li, J.F., Viehland, D., Appl. Phys. Lett. 86, 10 (2005).Google Scholar
Wang, F., Luo, L., Zhou, D., Zhao, X., Luo, H., Appl. Phys. Lett. 90 (21), 212903 (2007).CrossRefGoogle Scholar
Yarar, E., Hrkac, V., Zamponi, C., Piorra, A., Kienle, L., Quandt, E., AIP Adv . 6, 075115 (2016).CrossRefGoogle Scholar
Fichtner, S., Reimer, T., Chemnitz, S., Lofink, F., Wagner, B., APL Mater . 3, 116102 (2015).CrossRefGoogle Scholar
Piorra, A., Jahns, R., Teliban, I., Gugat, J.L., Gerken, M., Knöchel, R., Quandt, E., Appl. Phys. Lett. 103, 032902 (2013).CrossRefGoogle Scholar
Quandt, E., Ludwig, A., J. Appl. Phys. 85, 6232 (1999).CrossRefGoogle Scholar
Lou, J., Insignares, R.E., Cai, Z., Ziemer, K.S., Liu, M., Sun, N.X., Appl. Phys. Lett. 91, 182504 (2007).CrossRefGoogle Scholar
Lage, E., Kirchhof, C., Hrkac, V., Kienle, L., Jahns, R., Knöchel, R., Quandt, E., Meyners, D., Nat. Mater. 11, 523 (2012).CrossRefGoogle Scholar
Röbisch, V., Yarar, E., Urs, N.O., Teliban, I., Knöchel, R., McCord, J., Quandt, E., Meyners, D., J. Appl. Phys. 117, 17B513 (2015).CrossRefGoogle Scholar
Ren, S., Wuttig, M., Appl. Phys. Lett. 91, 083501 (2007).CrossRefGoogle Scholar
Ren, S., Briber, R.M., Wuttig, M., Appl. Phys. Lett. 93, 173507 (2008).CrossRefGoogle Scholar
Cahn, J.W., Acta Metall . 9, 795 (1961).CrossRefGoogle Scholar
Cahn, J.W., J. Appl. Phys. 34, 3581 (1963).CrossRefGoogle Scholar
Parka, C., Yoon, B.J., Thomas, E.L., Polymer 44, 6725 (2003).CrossRefGoogle Scholar
Shenqiang, R., Briber, R., Wuttig, M., Appl. Phys. Lett. 94, 113507 (2009).Google Scholar
Kimura, T., Goto, T., Shintani, H., Ishizaka, K., Arima, T., Tokura, Y., Nature 426, 55 (2003).CrossRefGoogle Scholar
Srinivasan, G., Rasmussen, E.T., Gallegos, J., Srinivasan, R., Phys. Rev. B Condens. Matter 64, 214408 (2001).CrossRefGoogle Scholar
Ramesh, R., Nat. Nanotechnol. 3, 7 (2008).CrossRefGoogle Scholar
Wang, Y., Gray, D., Berry, D., Gao, J., Li, M., Li, J.F., Viehland, D., Adv. Mater. 23, 35 (2011).Google Scholar
Zhuang, X., Sing, C., Dolabdjian, C., Finkel, P., Li, J.F., Viehland, D., IEEE Sens. J. 14, 150 (2014).CrossRefGoogle Scholar
Shen, Y., McLaughlin, K.L., Gao, J.Q., Li, M.H., Li, J.F., Viehland, D., Mater. Lett. 91, 307 (2013).CrossRefGoogle Scholar
Marauska, S., Jahns, R., Kirchhof, C., Claus, M., Quandt, E., Knöchel, R., Wagner, B., Sens. Actuators A 189, 321 (2013).CrossRefGoogle Scholar
Kirchhof, C., Krantz, M., Teliban, J., Jahns, R., Marauska, S., Wagner, B., Knöchel, R., Gerken, M., Meyners, D., Quandt, E., Appl. Phys. Lett. 102, 232905 (2013).CrossRefGoogle Scholar
Jahns, R., Greve, H., Woltermann, E., Quandt, E., Knöchel, R., IEEE Trans. Instrum. Meas. 60, 2995 (2011).CrossRefGoogle Scholar
Durdaut, P., Salzer, S., Reermann, J., Roebisch, V., Hayes, P., Piorra, A., Meyners, D., Quandt, E., Schmidt, G., Knoechel, R., Hoeft, M., IEEE Sens. J. 17 , 2338 (2017).CrossRefGoogle Scholar
Yarar, E., Salzer, S., Hrkac, V., Piorra, A., Höft, M., Knöchel, R., Kienle, L., Quandt, E., Appl. Phys. Lett. 109, 022901 (2016).CrossRefGoogle Scholar
Jahns, R., Zabel, S., Marauska, S., Gojdka, B., Wagner, B., Knöchel, R., Adelung, R., Faupel, F., Appl. Phys. Lett. 105, 052414 (2014).CrossRefGoogle Scholar
Hayes, P., Salzer, S., Reermann, J., Yarar, E., Röbisch, V., Piorra, A., Meyners, D., Höft, M., Knöchel, R., Schmidt, G., Quandt, E., Appl. Phys. Lett. 108, 182902 (2016).CrossRefGoogle Scholar
Berry, B.S., Pritchet, W.C., Phys. Rev. Lett. 34, 1022 (1975).CrossRefGoogle Scholar
Nan, T.X., Hui, Y., Rinaldi, M., Sun, N.X., Sci. Rep. 3, 1985 (2013).CrossRefGoogle Scholar
Zabel, S., Reermann, J., Fichtner, S., Kirchhof, C., Quandt, E., Wagner, B., Schmidt, G., Faupel, F., Appl. Phys. Lett. 108, 222401 (2016).CrossRefGoogle Scholar
Kittmann, A., Durdaut, P., Zabel, S., Reermann, J., Schmalz, J., Spetzler, B., Meyners, D., Sun, N.X., McCord, J., Gerken, M., Schmidt, G., Höft, M., Knöchel, R., Faupel, F., Quandt, E., Sci. Rep. 8, 278 (2018).CrossRefGoogle Scholar
Schmelz, M., Stolz, R., Zakosarenko, V., Schönau, T., Anders, S., Fritzsch, L., Mück, M., Meyer, M., Meyer, H.-G., Physica C Supercond. 482, 27 (2012).CrossRefGoogle Scholar
Sander, T.H., Preusser, J., Mhaskar, R., Kitching, J., Trahms, L., Knappe, S., Biomed. Opt. Express 3, 981 (2012).CrossRefGoogle Scholar
Portalier, E., Dufay, B., Saez, S., Dolabdjian, C., IEEE Trans. Magn. 51, 4002104 (2015).CrossRefGoogle Scholar