Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-27T10:24:38.396Z Has data issue: false hasContentIssue false

Materials for heat-assisted magnetic recording heads

Published online by Cambridge University Press:  09 February 2018

Michael C. Kautzky
Affiliation:
Seagate Technologies, USA; michael.c.kautzky@seagate.com
Martin G. Blaber
Affiliation:
Seagate Technologies, USA; martin.blaber@seagate.com
Get access

Abstract

Heat-assisted magnetic recording (HAMR) is the next-generation technology that is required to deliver areal densities in excess of 2 terabit/in2 for high-capacity, low-cost hard drives.The recording process relies on spatially and temporally localized heating of the media surface to lower its coercivity during the magnetic writing process. This scheme drives substantial changes to the recording head write element architecture, combining the conventional electromagnet structure with integrated optical light delivery layers, focusing optics, and plasmonic nanostructures to generate subwavelength optical spots. Power losses associated with the strong optical fields required for heating the media can cause local temperatures in excess of 400°C at the recording head surface. Coupled with high pressures, an oxidative/corrosive air-bearing environment, and a sub-3 nm head-media spacing, this introduces new challenges for the functional materials in recording heads required to balance performance and long-term reliability demands. Here, we briefly review specific challenges associated with HAMR heads, highlighting the major requirements, failure modes, and needed innovations for the near-field transducer and optical-waveguide subsystems.

Type
Materials for Heat-Assisted Magnetic Recording
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Challener, W.A., Peng, C., Itagi, A.V., Karns, D., Peng, W., Peng, Y., Yang, X.M., Zhu, X., Gokemeijer, N.J., Hsia, Y.T., Ju, G., Rottmayer, R.E., Seigler, M.A., Gage, E.C., Nat. Photonics 3, 220 (2009).CrossRefGoogle Scholar
Gosciniak, J., Mooney, M., Gubbins, M., Corbett, B., Nanophotonics 4 (7), 503 (2015).CrossRefGoogle Scholar
Boettcher, U., Li, H., de Callafon, R.A., Talke, F.E., IEEE Trans. Magn. 47 (7), 1823 (2011).CrossRefGoogle Scholar
Baranov, D.G., Zuev, D.A., Lepeshov, S.I., Kotov, O.V., Krasnok, A.E., Evlyukhin, A.B., Chichkov, B.N., Optica 4, 814 (2017).CrossRefGoogle Scholar
Bruynooghe, S., Schmidt, N., Sundermann, M., Becker, H.W., Spinzig, S., Opt. Inter. Coatings 2010, paper ThA9, https://www.osapublishing.org/conference.cfm?meetingid=38&yr=2010.Google Scholar
Arnold, M.D., Blaber, M.G., Opt. Express 17, 3835 (2009).CrossRefGoogle Scholar
Link, S., El-Sayed, M.A., J. Phys. Chem. B 103 (40), 8410 (1999).CrossRefGoogle Scholar
Westcott, S.L., Jackson, J.B., Radloff, C., Halas, N.J., Phys. Rev. B Condens. Matter 66, 155431 (2002).CrossRefGoogle Scholar
Eragamreddy, H.R., Guler, U., Chaudhuri, K., Dutta, A., Kildishev, A.V., Shalaev, V.M., Boltasseva, A., in Conf. Lasers Electro-Optics (Optical Society of America, 2017), p. FTu4H.7.Google Scholar
Sönnichsen, C., Franzl, T., Wilk, T., von Plessen, G., Feldmann, J., Wilson, O., Mulvaney, P., Phys. Rev. Lett. 88, 077402 (2002).CrossRefGoogle Scholar
Foerster, B., Joplin, A., Kaefer, K., Celiksoy, S., Link, S., Sönnichsen, C., ACS Nano 11 (3), 2886 (2017).CrossRefGoogle Scholar
Kuttge, M., Lezec, H.J., Atwater, H.A., Polman, A., Appl. Phys. Lett. 93, 113110 (2008).CrossRefGoogle Scholar
Palik, E.D., Handbook of Optical Constants of Solids (Academic Press, San Diego, 1998).Google Scholar
Johnson, P.B., Christy, R.W., Phys. Rev. B Condens. Matter 6, 4370 (1972).CrossRefGoogle Scholar
Weaver, J.H., Frederikse, H.P.R., Optical Properties of Selected Elements, 82nd ed. (CRC Press, Boca Raton, FL, 2001).Google Scholar
Wu, A., Kubota, Y., Klemmer, T., Rausch, T., Peng, C., Peng, Y., Karns, D., Zhu, X., Ding, Y., Chang, E., Zhao, Y., Zhou, H., Gao, K., Thiele, J.-U., Seigler, M., Ju, G., Gage, E., IEEE Trans. Magn. 49 (2), 779 (2013).CrossRefGoogle Scholar
Kossoy, A., Simakov, D., Olafsson, S., Leosson, K., Thin Solid Films 536, 50 (2013).CrossRefGoogle Scholar
Dalla Torre, J., Gilmer, G.H., Windt, D.L., Kalyanaraman, R., Baumann, F.H., O’Sullivan, P.L., Sapjeta, J., Dias de la Rubia, T., Djafari Rouhani, M., J. Appl. Phys. 94, 263 (2003).CrossRefGoogle Scholar
Karabacak, T., Wang, G.-C., Lu, T.-M., J. Vac. Sci. Technol. A 22, 1778 (2004).CrossRefGoogle Scholar
Gupta, D., Science 11, 7 (2003).Google Scholar
Kilgore, S., Gaw, C., Henry, H., Hill, D., Schroder, D., “Electromigration of Electroplated Gold Interconnects,” Mater. Res. Soc. Symp. Proc. 863, Besser, P.R., McKerrow, A.J., Iacopi, F., Wong, C.P., Vlassak, J.J., Eds. (Materials Research Society, Warrendale, PA, 2005), p. B8.30.Google Scholar
Huang, Q., Lilley, C., Divan, R., Bode, M., IEEE Trans. Nanotechnol. 7 (6), 688 (2008).CrossRefGoogle Scholar
Taylor, A., Siddiquee, A., Chon, J., ACS Nano 8, 12071 (2014).CrossRefGoogle Scholar
Im, H., Oh, S.-H., Small 10, 680 (2014).CrossRefGoogle Scholar
Nichols, F.A., Mullins, W.W., J. Appl. Phys. 36, 1826 (1965).CrossRefGoogle Scholar
Karim, S., Toimil-Molares, M.E., Balogh, A.G., Ensinger, W., Cornelius, T.W., Khan, E.U., Neumann, R., Nanotechnology 17, 5954 (2006).CrossRefGoogle Scholar
Karim, S., Toimil-Molares, M.E., Ensinger, W., Balogh, A.G., Cornelius, T.W., Khan, E.U., Neumann, R., J. Phys. D Appl. Phys. 40, 3767 (2007).CrossRefGoogle Scholar
Hirata, K., Hosoi, R., Kawamori, K., Roppongi, T., “Plasmon Generator and Thermally-Assisted Magnetic Recording Head Having the Same,” US Patent 8,964,514 (August 7, 2012).Google Scholar
Ji, R., Xu, B., Cen, Z., Ying, J.F., Toh, Y.T., J. Appl. Phys. 117, 17A918 (2015).CrossRefGoogle Scholar
Aouani, H., Wenger, J., Gerard, D., Rigneault, H., Devaux, E., Ebbesen, T.W., Mahdavi, F., Xu, T., Blair, S., ACS Nano 3, 2043 (2009).CrossRefGoogle Scholar
Habteyes, T., Dhuey, S., Wood, E., Gargas, D., Cabrini, S., Schuck, P.J., Alivisatos, A.P., Leone, S.R., ACS Nano 6, 5702 (2012).CrossRefGoogle Scholar
Jeong, M., Freedman, J., Liang, H., Chow, C.-M., Sokalski, V., Bain, J.A., Malen, J., Phys. Rev. Appl. 5, 014009 (2016).CrossRefGoogle Scholar
Blaber, M.G., Arnold, M.D., Ford, M.J., J. Phys. Condens. Matter 22 (14), 143201 (2011).CrossRefGoogle Scholar
West, P.R., Ishii, S., Naik, G.V., Emani, N.K., Shalaev, V.M., Boltasseva, A., Laser Photon. Rev. 4, 795 (2010).CrossRefGoogle Scholar
Naik, G.V., Shalaev, V.M., Boltasseva, A., Adv. Mater. 25, 3264 (2013).CrossRefGoogle Scholar
Naik, G.V., Kim, J., Boltasseva, A., Opt. Mater. Express 1, 1090 (2011).CrossRefGoogle Scholar
Guler, U., Boltasseva, A., Shalaev, V., Science 344, 263 (2014).CrossRefGoogle Scholar
Rausch, T., Chu, A.S., Lu, P.-L., Puranam, S., Nagulapally, D., Lammers, T., Dykes, J.W., Gage, E.C., IEEE Trans. Magn. 51 (4), 3000405 (2015).CrossRefGoogle Scholar