Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-28T15:36:10.806Z Has data issue: false hasContentIssue false

Materials Matter in Microfluidic Devices

Published online by Cambridge University Press:  31 January 2011

Get access

Abstract

As more micro- and nanofluidic methodologies are developed for a growing number of diverse applications, it becomes increasingly apparent that the choice of substrate material can have a profound effect on the eventual performance of a device. This is due mostly to the high surface-to-volume ratio that exists within such small structures. In addition to the obvious limitations related to the choice of solvent, operating temperatures, and pressure, the method of fluidic pumping—in particular, an electrokinetics-based methodology using a combination of electro-osmotic and electrophoresis flows—can further complicate material choice. These factors, however, are only part of the problem; once chemicals or biological materials (e.g., proteins or cells) are introduced into a microfluidic system, surface characteristics will have a profound influence on the activity of such components, which will subsequently influence their performance. This article reviews the common types of materials that are currently used to fabricate microfluidic devices and considers how these materials may influence the overall performance associated with chemical and biological processing. Consideration will also be given to the selection of materials and surface modifications that can aid in exploiting the high surface properties to enhance process performance.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Manz, A., Fettinger, J.C., Verpoorte, E., Ludi, H., Widmer, H.M., and Harrison, D.J., Trends Anal. Chem. 10 (1991) p. 144.CrossRefGoogle Scholar
2Manz, A. and Becker, H., Eds., Microsystem Technology in Chemistry and Life Sciences (Springer, Berlin, 1998).CrossRefGoogle Scholar
3Jensen, K.F., Chem. Eng. Sci. 56 (2001) p. 293.CrossRefGoogle Scholar
4Fletcher, P.D.I., Haswell, S.J., Pombo-Villar, E., Warrington, B.H., Watts, P., Wong, SY.F., and Zhang, X., Tetrahedron 58 (2002) p. 4735.CrossRefGoogle Scholar
5Laurell, T., Nilsson, J., Jensen, K., Harrison, D.J., and Kutter, J.P., Eds., 8th Int. Conf. Miniaturized Systems for Chemistry and Life Sciences (MicroTAS 2004) (Malmö, Sweden, September 26–30, 2004).Google Scholar
6Wiles, C., Watts, P., and Haswell, S.J., Tetrahedron 61 (2005) p. 5209.CrossRefGoogle Scholar
7He, P., Haswell, S.J., and Fletcher, P.D.I., Lab Chip 4 (2004) p. 38.CrossRefGoogle Scholar
8Wiles, C., Watts, P., Haswell, S.J., and Pombo-Villar, E., Lab Chip 4 (2004) p. 171.CrossRefGoogle Scholar
9Terry, S.C., Jerman, J.H., and Angell, J.B., IEEE Trans. Electron. Devices ED-26 (1979) p. 1880.CrossRefGoogle Scholar
10McCreedy, T., Anal. Chim. Acta 427 (2001) p. 39.CrossRefGoogle Scholar
11Ehrfeld, W., Hessel, V., and Löwe, H., Microreactors: New Technology for Modern Chemistry, (Wiley-VCH, Weinheim, Germany, 2000) p. 11.CrossRefGoogle Scholar
12Lagally, E. and Mathies, R.A., J. Phys. D Appl. Phys. 37 (2004) p. R245.CrossRefGoogle Scholar
13Grayson, A.R., Johnson, A., Flynn, N., Li, Y., Cima, M., and Langer, R., Proc. IEEE 92 (2004) p. 6.CrossRefGoogle Scholar
14Ahn, C.H., Choi, J.W., Beaucage, G., Nevin, J.H., Lee, J.B., Puntambekar, A., and Lee, J.Y., Proc. IEEE 92 (2004) p. 154.CrossRefGoogle Scholar
15Fletcher, P.D.I., Haswell, S.J., and Zhang, X., Lab Chip 1 (2001) p. 115.CrossRefGoogle Scholar
16Fletcher, P.D.I., Haswell, S.J., and Zhang, X., Lab Chip 2 (2002) p. 102.CrossRefGoogle Scholar
17Overbeek, J.Th.G., in Colloid Science, Vol. 1, Chap. V, edited by Kruyt, H.R. (Elsevier, Amsterdam, 1952) p. 195.Google Scholar
18Rice, C.L. and Whitehead, R., J. Phys. Chem. 69 (1965) p. 4017.CrossRefGoogle Scholar
19Hunter, R.J., Zeta Potential in Colloid Science (Academic Press, London, 1981).Google Scholar
20Paul, P.H., Garguilo, M.G., and Rakestraw, D.J., Anal. Chem. 70 (1998) p. 2459.CrossRefGoogle Scholar
21Harmon, B.J., Leesong, I., and Regnier, F.E., Anal. Chem. 66 (1994) p. 3797.CrossRefGoogle Scholar
22Patterson, D.H., Harmon, B.J., and Regnier, F.E., J. Chromatogr. A 732 (1996) p. 119.CrossRefGoogle Scholar
23Hau, W.L.W., Trau, D.W., Sucher, N.J., Wong, M., and Zohar, Y., J. Micromech. Microeng. 13 (2003) p. 272.CrossRefGoogle Scholar
24Hu, S.W., Ren, X., Bachman, M., Sims, C.E., Li, G.P., and Allbritton, N.L., Anal. Chem. 74 (2002) p. 4117.CrossRefGoogle Scholar
25Gillmor, S.D., Larson, B.J., Braun, J.M., Mason, C.E., Cruz-Barba, L.E., Denes, F., and Lagally, M.G., in Proc. 2nd Annu. IEEE-EMBS Spec. Top. Conf. on Microtechnologies in Medicine and Biology (Madison, Wis., 2002) p. 51.Google Scholar
26Fritz, J.L. and Owen, M.J., J. Adhesives 54 (1995) p. 33.CrossRefGoogle Scholar
27Handique, K., Burke, D.T., Mastrangelo, C.H., and Burns, M.A., Anal. Chem. 72 (2000) p. 4100.CrossRefGoogle Scholar
28Schneider, T.W., Schessler, H.M., Shaffer, K.M., Dumm, J.M., and Younce, L.A., Biomed. Microdev. 3 (4) (2001) p. 315.CrossRefGoogle Scholar
29Takayama, S., McDonald, J.C., Ostuni, E., Liang, M.N., Kenis, P.J.A., Ismagilov, R.F., and Whitesides, G.M., Proc. Natl. Acad. Sci. USA 96 (1999) p. 5545.CrossRefGoogle Scholar
30Shiu, J.-Y. and Chen, P.L., Adv. Mater. 17 (2005) p. 1866.CrossRefGoogle Scholar
31Zhang, Z.L., Crozatier, C., Berre, M.L., and Chen, Y., Microelectron. Eng. 78 (2005) p. 556.CrossRefGoogle Scholar
32Nikbin, N. and Watts, P., Org. Process Res. Dev. 8 (2004) p. 942.CrossRefGoogle Scholar
33Svec, F., LC-GC Europe 18 (2004) p. 17.Google Scholar
34Peterson, D.S., Rohr, T., Svec, F.K., and Frechet, J.M.J., Anal. Chem. 75 (2003) p. 5328.CrossRefGoogle Scholar
35Yang, Y.N., Li, C., Kameoka, J., Leeb, K.H., and Craighead, H.G., Lab Chip 5 (2005) p. 869.CrossRefGoogle Scholar
36Takagi, M., Maki, T., Miyahara, M., and Mae, K., Chem. Eng. J. 101 (2004) p. 269.CrossRefGoogle Scholar
37Munson, M.S., Hasenbank, M.S., Fu, E., and Yager, P., Lab Chip 4 (2004) p. 438.CrossRefGoogle Scholar
38Munson, M.S., Hawkins, K.R., Hasenbank, M.S., and Yager, P., Lab Chip 5 (2005) p. 856.CrossRefGoogle Scholar
39Madou, M., Fundamentals of Microfabrication (CRC Press, Boca Raton, Fla., 1997).Google Scholar
40McCreedy, T., Trends Anal. Chem. 19 (2000) p. 396.CrossRefGoogle Scholar
41Al-Gailani, B.R.M. and McCreedy, T., Chem. Commun. (2003) p. 120.CrossRefGoogle Scholar
42Fletcher, P.D.I., Haswell, S.J., Watts, P., and Zhang, X., Dekker Encyclopedia of Nanoscience and Nanotechnology (Marcel-Dekker, New York, 2004) p. 1547.Google Scholar