Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-14T05:15:50.972Z Has data issue: false hasContentIssue false

MEMS-based thin-film solid-oxide fuel cells

Published online by Cambridge University Press:  10 September 2014

Jihwan An
Affiliation:
Department of Mechanical Engineering, Stanford University, USA, and Seoul National University of Science and Technology, Korea; jihwanan@stanford.edu
Joon Hyung Shim
Affiliation:
Department of Mechanical Engineering, Korea University, South Korea; shimm@korea.ac.kr
Young-Beom Kim
Affiliation:
Department of Mechanical Engineering, Hanyang University, South Korea; ybkim@hanyang.ac.kr
Joong Sun Park
Affiliation:
Argonne National Laboratory, USA; parkj@anl.gov
Wonyoung Lee
Affiliation:
School of Mechanical Engineering, Sungkyunkwan University, South Korea; leewy@skku.edu
Turgut M. Gür
Affiliation:
Department of Materials Science and Engineering, Stanford University, USA; turgut.gur@stanford.edu
Fritz B. Prinz
Affiliation:
Departments of Mechanical Engineering and Materials Science and Engineering, Stanford University, USA; fbp@cdr.stanford.edu
Get access

Abstract

Thin-film solid-oxide fuel cells (TF-SOFCs) fabricated using microelectromechanical systems (MEMS) processing techniques not only help lower the cell operating temperature but also provide a convenient platform for studying cathodic losses. Utilizing these platforms, cathode kinetics can be enhanced dramatically by engineering the microstructure of the cathode/electrolyte interface by increasing the surface grain-boundary density. Nanoscale secondary ion mass spectrometry and high-resolution transmission electron microscopy studies have shown that oxygen exchange at electrolyte surface grain boundaries is facilitated by a high population of oxide-ion vacancies segregating preferentially to the grain boundaries. Furthermore, three-dimensional structuring of TF-SOFCs enabled by various lithography methods also helps increase the active surface area and enhance the surface exchange reaction. Although their practical prospects are yet to be verified, MEMS-based TF-SOFC platforms hold the potential to provide high-performance for low-temperature SOFC applications.

Type
Research Article
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

O’Hayre, R., Cha, S.W., Colella, W., Prinz, F.B., Fuel Cell Fundamentals (2nd edition) (Wiley, NJ, 2009).Google Scholar
Adler, S.B., Chem. Rev. 104, 4791 (2004).CrossRefGoogle Scholar
Huang, H., Nakamura, M., Su, P., Fasching, R., Saito, Y., Prinz, F.B., J. Electrochem. Soc. 154, B20 (2007).CrossRefGoogle Scholar
Su, P.-C., Chao, C.-C., Shim, J.H., Fasching, R., Prinz, F.B., Nano Lett. 8, 2289 (2008).Google Scholar
Su, P.-C., Prinz, F.B., Electrochem. Commun. 16, 77 (2012).Google Scholar
Shim, J.H., Chao, C.-C., Huang, H., Prinz, F.B., Chem. Mater. 19, 3850 (2007).Google Scholar
Shim, J.H., Park, J.S., An, J., Gür, T.M., Kang, S., Prinz, F.B., Chem. Mater. 21, 3290 (2009).Google Scholar
Chao, C.-C., Hsu, C.-M., Cui, Y., Prinz, F.B., ACS Nano 5, 5692 (2011).Google Scholar
Kim, Y.B., Gür, T.M., Kang, S., Jung, H.-J., Sinclair, R., Prinz, F.B., Electrochem. Commun. 13, 403 (2011).Google Scholar
Su, P.-C., Prinz, F.B., Microelectron. Eng. 88, 2405 (2011).Google Scholar
Fan, Z., An, J., Iaucu, A., Prinz, F.B., J. Power Sources 218, 187 (2012).CrossRefGoogle Scholar
An, J., Kim, Y.B., Park, J., Gür, T.M., Prinz, F.B., Nano Lett. 13, 4551 (2013).Google Scholar
Chao, C.-C., Park, J.S., Tian, X., Shim, J.H., Gür, T.M., Prinz, F.B., ACS Nano 7, 2186 (2013).Google Scholar
Tang, Y., Stanley, K., Wu, J., Ghosh, D., Zhang, J., J. Micromech. Microeng. 15, S185 (2005).Google Scholar
Evans, A., Bieberle-Hütter, A., Rupp, J.L.M., Gauckler, L.J., J. Power Sources 194, 119 (2009).Google Scholar
Johnson, A.C., Lai, B.-K., Xiong, H., Ramanathan, S., J. Power Sources 186, 252 (2009).CrossRefGoogle Scholar
Takagi, Y., Lai, B.-K., Kerman, K., Ramanathan, S., Energy Environ. Sci. 4, 3473 (2011).Google Scholar
Lai, B.-K., Kerman, K., Ramanathan, S., J. Power Sources 196, 6299 (2011).Google Scholar
Tsuchiya, M., Lai, B.-K., Ramanathan, S., Nat. Nanotechnol. 6, 282 (2011).CrossRefGoogle Scholar
Joo, J.H., Choi, G.M., J. Power Sources 182, 589 (2008).CrossRefGoogle Scholar
Muecke, U.P., Beckel, D., Bernard, A., Bieberle-Hutter, A., Graf, S., Infortuna, A., Müller, P., Rupp, J.L.M., Schneider, J., Gauckler, L.J., Adv. Funct. Mater. 18, 1 (2008).CrossRefGoogle Scholar
Kang, S., Heo, P., Lee, Y.H., Ha, J., Chang, I., Cha, S.W., Electrochem. Commun. 13, 374 (2011).Google Scholar
Park, Y.-I., Su, P.C., Cha, S.W., Saito, Y., Prinz, F.B., J. Electrochem. Soc. 153, A431 (2006).Google Scholar
Kwon, C.-W., Son, J.-W., Lee, J.-H., Kim, H.-M., Lee, H.-W., Kim, K.-B., Adv. Funct. Mater. 21, 1154 (2011).CrossRefGoogle Scholar
Kwon, C.-W., Lee, J.-I., Kim, K.-B., Lee, H.-W., Lee, J.-H., Son, J.-W., J. Power Sources 210, 178 (2012).Google Scholar
Ha, S.B., Su, P.-C., Cha, S.W., J. Mater. Chem. A 1, 9645 (2013).Google Scholar
Motoyama, M., Chao, C.-C., An, J., Jung, H.J., Gür, T.M., Prinz, F.B., ACS Nano 8, 340 (2014).Google Scholar
Kerman, K., Lai, B.-K., Ramanathan, S., Adv. Energy Mater. 2, 656 (2012).Google Scholar
Beckel, D., Bieberle-Hütter, A., Harvey, A., Infortuna, A., Muecke, U.P., Prestat, M., Rupp, J.L.M., Gauckler, L.J., J. Power Sources 172, 325 (2007).CrossRefGoogle Scholar
Shim, J.H., Kang, S., Cha, S.W., Lee, W., Kim, Y.B., Park, J.S., Gür, T.M., Prinz, F.B., Chao, C.-C., An, J., J. Mater. Chem. A 1, 12695 (2013).CrossRefGoogle Scholar
Kerman, K., Ramanathan, S., J. Mater. Res. 29, 320 (2014).Google Scholar
Lee, W., Jung, H.J., Lee, M.H., Kim, Y.-B., Park, J.S., Sinclair, R., Prinz, F.B., Adv. Funct. Mater. 22, 965 (2012).Google Scholar
Kim, Y.B., Holme, T.P., Gür, T.M., Prinz, F.B., Adv. Funct. Mater. 21, 4684 (2011).CrossRefGoogle Scholar
Kim, Y.B., Shim, J.H., Gür, T.M., Prinz, F.B., J. Electrochem. Soc. 158, B1453 (2011).Google Scholar
Kim, Y.B., Park, J.S., Gür, T.M., Prinz, F.B., J. Power Sources 196, 10550 (2011).Google Scholar
Bae, K., Jang, D.Y., Jung, H.J., Kim, J.W., Son, J.-W., Shim, J.H., J. Power Sources 248, 1163 (2014).Google Scholar
Fan, Z., Prinz, F.B., Nano Lett. 11, 2202 (2011).Google Scholar
Fan, Z., Chao, C.-C., Hossei-Babaei, F., Prinz, F.B., J. Mater. Chem. 21, 10903 (2011).CrossRefGoogle Scholar
An, J., Kim, Y.B., Park, J.S., Shim, J.H., Gür, T.M., Prinz, F.B., J. Vac. Sci. Technol. A 30, 01A161 (2012).Google Scholar
Babilo, P., Haile, S.M., J. Am. Ceram. Soc. 88, 2362 (2005).Google Scholar
An, J., Kim, Y.B., Prinz, F.B., Phys. Chem. Chem. Phys. 15, 7520 (2013).Google Scholar
Shim, J.H., Park, J.S., Holme, T.P., Crabb, K., Lee, W., Kim, Y.B., Tian, X., Gür, T.M., Prinz, F.B., Acta Mater. 60, 1 (2012).Google Scholar
Horita, T., Yamaji, K., Sakai, N., Yokokawa, H., Kawada, T., Kato, T., Solid State Ionics 127, 55 (2000).Google Scholar
Fleig, J., Annu. Rev. Mater. Res. 33, 361 (2003).Google Scholar
Lee, H.B., Prinz, F.B., Cai, W., Acta Mater. 61, 3872 (2013).Google Scholar
An, J., Park, J.S., Koh, A.L., Lee, H.B., Jung, H.J., Schoonman, J., Sinclair, R., Gür, T. M., Prinz, F.B., Sci. Rep. 3, 2680 (2013).Google Scholar
An, J., Koh, A.L., Park, J.S., Sinclair, R., Gür, T.M., Prinz, F.B., J. Phys. Chem. Lett. 4, 1156 (2013).Google Scholar
Chao, C.-C., Kim, Y.B., Prinz, F.B., Nano Lett. 9, 3626 (2009).CrossRefGoogle Scholar
Ryll, T., Galinski, H., Schlagenhauf, L., Elser, P., Rupp, J.L.M., Bieberle-Hütter, A., Gauckler, L.J., Adv. Funct. Mater. 21, 565 (2011).Google Scholar