Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-13T05:51:56.422Z Has data issue: false hasContentIssue false

Metalorganic Deposition of YBCO Films for Second-Generation High-Temperature Superconductor Wires

Published online by Cambridge University Press:  31 January 2011

Get access

Abstract

Metalorganic deposition (MOD) is an attractive process for low-cost, high-rate deposition of YBa2Cu3O7– (YBCO) films on continuous lengths of biaxially textured metallic templates for second-generation (2G) high-temperature superconductor (HTS) wires.MOD of YBCO films involves four steps:precursor synthesis, coating, decomposition, and reaction.The final films must meet stringent requirements, including high critical current, uniformity across the width and along the length of the textured substrate, and excellent mechanical properties.Achieving these properties has required the development of a metalorganic precursor that produces an intermediate BaF2-based film, which in turn is converted to a high-quality YBCO film.Understanding and controlling the deposition of the metalorganic precursor and its conversion to YBCO are critical to reproducibly manufacturing uniform, high-performance, HTS wires required for commercial applications.This article reviews the issues that must be addressed in the use of MOD for low-cost YBCO film fabrication and summarizes the performance of 2G HTS wires prepared by this manufacturing process.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Sheth, A. and Trembath, K.Supercond. Sci. Technol. 16 (2003) p.322.CrossRefGoogle Scholar
2Yamagiwa, K.Hiei, H.Takahashi, Y.Kim, S.B.Matsumoto, K.Ikuta, H.Mitzutani, U. and Hirabayashi, I.Physica C 334 (2000) p. 301.CrossRefGoogle Scholar
3Xu, Y.Goyal, A.Rutter, N.A.Shi, D.Paranthaman, M.Sathyamurthy, S.Martin, P.M. and Kroeger, D.M. J. Am Ceram. Soc. (2004) in press.Google Scholar
4Rice, C.E.Dover, R.B. van, and Fisanick, G.J.Appl. Phys. Lett. 51 (1987) p.1842.CrossRefGoogle Scholar
5Cross, M.E.Hong, M.Liou, S.H.Gallagher, P.K. and Kwo, J.J. Appl. Phys. 52 (1998) p.160.Google Scholar
6Manabe, T.Kondo, W.Misuta, S. and Kumagai, T.J.Appl. Phys. 30 (1991) p.L1641.Google Scholar
7Rupich, M.W.Liu, Y.P.Ibechem, J. and Hachey, J.P.J.Mater. Res. 8 (1993) p.1487.Google Scholar
8Kumagai, T.Yamasaki, H.Endo, K.Manabe, T.Niini, H.Tsunoda, T.Kondo, W. and Mizuta, S.Jpn. J. Appl. Phys., Part 2 32 (1993) p.L1602.Google Scholar
9Manabe, T.Kondo, W.Mizuta, S. and Kumagai, T.J.Mater. Res. 9 (1994) p.858.CrossRefGoogle Scholar
10Kumagai, T.Manabe, T.Kondo, W. and Arai, K.Appl. Phys. Lett. 61 (1992) p.998.Google Scholar
11Kordas, G.J. Non-Cryst. Solids 121 (1990) p.436.CrossRefGoogle Scholar
12Chu, P.-Y.Campion, I. and Buchanan, R.C.J.Mater. Res. 8 (1993) p.261.CrossRefGoogle Scholar
13Bowmer, T.N. and Shokoohi, F.K.J. Mater. Res. 6 (1991) p.670.Google Scholar
14Parmigiani, F.Chiarello, G.Ripamonti, N.Foretzki, H. and Roll, U.Phys. Rev. B 36 (1987) p.7148.CrossRefGoogle Scholar
15Kumagai, T.Manabe, T.Kondo, W.Minamiue, H. and Mizuta, S.Jpn. J. Appl. Phys., Part 2 29 (1990) p.L940.CrossRefGoogle Scholar
16Hirano, S.Hayashi, T. and Miura, M.J.Am. Ceram. Soc. 73 (1990) p.885.CrossRefGoogle Scholar
17Nonaka, T.Kanedo, K.Hasegawa, T.Kishio, K.Takahashi, Y.Kobayashi, K.Kitazawa, K. and Fueki, K.Jpn. J.Appl. Phys., Part 2 27 (1998) p.L867.Google Scholar
18Gupta, A.Jaganathan, R.Cooper, E.I.Giess, E.A.Landman, J.I. and Hussey, B.W.Appl. Phys. Lett. 52 (1988) p.2077.CrossRefGoogle Scholar
19Gupta, A.Cooper, E.I.Jaganathan, R. and Giess, E.A. in Chemistry of High Temperature Superconductors II (American Chemical Society, Washington, DC, 1988) p.265.Google Scholar
20McIntyre, P.C.Cima, M.J. and Ng, M.F.J.Appl. Phys 68 (1990) p.4183.Google Scholar
21McIntyre, P.C.Cima, M.J.Smith, J.A.Hallock, R.B.Siegal, M.P. and Phillips, J.M.J. Appl. Phys. 71 (1992) p.1868.Google Scholar
22McIntyre, P.C.Cima, M.J. and Roshko, A.J.Appl. Phys. 77 (1995) p.5263.Google Scholar
23McIntyre, P.C. and Cima, M.J.J.Mater. Res. 9 (1994) p.2219.Google Scholar
24Smith, J.A.Cima, M.J. and Sonnenburg, N.IEEE Trans Appl. Supercond. 9 (1999) p.1531.Google Scholar
25Rupich, M.W.Verebelyi, D.Thieme, C.Schoop, U.Li, X.Kodenkandath, T.Zhang, W.Teplitsky, M.Scudiere, J.Goyal, A. and Paranthaman, M.Development of 2G YBCO-RABiTS Wires,” presented at the 2003 Annual Superconductivity Peer Review, Washington, DC, July 23–25, 2003.Google Scholar
26Araki, T. and Hirabayashi, I.Supercond. Sci. Technol. 16 (2003) p.7.Google Scholar
27Fuji, H.Honjo, T.Teranishi, R.Tokunaga, Y.Shibata, J., Izumi, T.Shiohara, Y.Iijima, Y. and Saitoh, T.Physica C 392–396 (2003) p.905.Google Scholar
28Teranishi, R.Fuji, H.Honjo, T.Nakamura, Y.Izumi, T.Shiohara, Y.Shibata, J.Yamamoto, T.Ikuhara, Y. and Yoshimura, M.Physica C 378–381 (2002) p.1033.Google Scholar
29Dawley, J.T.Clem, P.G.Siegal, M.P.Tallant, D.R. and Overmyer, D.L.J.Mater. Res. 17 (2002) p.1900.CrossRefGoogle Scholar
30Siegal, M.P.Clem, P.G.Dawley, J.T.Ong, R.J. and Rodriquez, M.A.Appl. Phys. Let. 15 (2002) p.2710.Google Scholar
31Araki, T.Yamagiwa, K.Suzuki, K.Hirabayashi, I. and Tanaka, S.Supercond. Sci. Technol. 14 (2001) p.L21.Google Scholar
32Rupich, M.W.Li, Q.Annavarpu, S.Thieme, C.Zhang, W.Punier, V.Paranthaman, M.Goyal, A.Lee, D.F.Specht, E.D. and List, F.A.IEEE Trans. Appl. Supercond. 11 (2001) p.2927.CrossRefGoogle Scholar
33Gutoff, E.B. and Cohen, E.D.Coating and Drying Defects: Troubleshooting Operating Problems (John Wiley & Sons, New York, 1995) p.96.Google Scholar
34Kistler, S.F. and Schweizer, P.M.Liquid Film Coating: Scientific Principles and Their Technological Implications (Chapman & Hall, New York, 1997) p.401.CrossRefGoogle Scholar
35Kistler, S.F. and Schweizer, P.M.Liquid Film Coating: Scientific Principles and Their Technological Implications (Chapman & Hall, New York, 1997) p.675.Google Scholar
36List, F.A. and Clem, P.G.Laboratory Scale Dip-Coating and Vacuum Conversion of Solution-Deposited YBCO,” presented at the 2003 Annual Superconductivity Peer Review, Washington, DC, July 23–25, 2003.Google Scholar
37Verebelyi, D.T.Schoop, U.Thimie, C.Li, X.Zhang, W.Kodenkandath, T.Malozemoff, A.P.Nguyen, N.Siegal, E.Buczek, D.Lynch, J.Scudiere, J., Rupich, M.Goyal, A.Specht, E.D.Martin, P. and Paranthaman, M.Supercond. Sci. Technol. 16 (2003) p.19.Google Scholar
38McIntyre, P.C.Chiu, R.C.Cima, M.J. and Rhine, W.E. in High-Temperature Superconductors: Fundamental Properties and Novel Materials Processing, edited by Christen, D.Narayan, J. and Schneemeyer, L. (Mater. Res. Soc. Symp. Proc. 169, Pittsburgh, 1990) p.743.Google Scholar
39Clem, P.Siegal, M. and Voigt, J.Solution Deposition of YBCO Coated Conductors,” presented at the 2003 Annual Superconductivity Peer Review, Washington, DC, July 23–25, 2003.Google Scholar
40Dawley, J.T.Clem, P.G.Boyle, T.J.Ottley, L.M., Overmyer, D.L. and Siegal, M.P.Physica C 402 (2004) p.143.Google Scholar
41Fuji, H.Honjo, T.Teranishi, R.Tokunaga, Y.Matsuda, J.Asada, S.Yamada, Y.Izumi, T.Shiohara, Y.Iijima, Y. and Saitoh, T. in Frontiers in Superconducting Materials—New Materials and Applications, edited by Matias, V.Talvacchio, J.Xi, X.Han, Z., Neumüller, H.-W. (Mater. Res. Soc. Symp. Proc. EXS-3, Warrendale, PA, 2004) p.117.Google Scholar
42Rupich, M.W.Zhang, W.Li, X.Kodenkan-dath, T., Verebelyi, D.T.Schoop, U.Thieme, C.Teplitsky, M., Lynch, J.Nguyen, N.Siegal, E.Scudiere, J.Maroni, V.Venkataraman, K.Miller, D. and Holesinger, T.G. Physica C: Super-cond. (2004) in press.Google Scholar
43Solovyov, V.F.Wiesmann, H.J.Wu, L. and Suenaga, M.Physica C 353 (2001) p.14.Google Scholar
44Lee, D.F.Leonard, K.J.Heatherly, L. Jr, Yoo, J.List, F.A.Rutter, N.Cook, S.W.Sathyamurthy, S.Paranthaman, M.Martin, P.M.Goyal, A. and Kroeger, D. M.Supercond. Sci. Technol. 17 (2004) p.386.Google Scholar
45Solovyov, V.F.Wiesmann, H.J.Wu, L. and Suenaga, M.Supercond. Sci. Technol. 16 (2003) p. L37.CrossRefGoogle Scholar
46Yoshizumi, M.Seleznev, I. and Cima, M.J.Physica C 403 (2004) p.191.CrossRefGoogle Scholar
47Zhang, Y.Feenstra, R.Thompson, J.R.Gapud, A.A.Aytug, T. and Christen, D. in Frontiers in Superconducting Materials—New Materials and Applications, edited by Matias, V.Talvacchio, J.Xi, X.Han, Z. and Neumüller, H.-W. (Mater. Res. Soc. Symp. Proc. EXS-3, Warrendale, PA, 2004) p.93.Google Scholar
48List, F.A.Specht, E.D.Heatherly, L.Leonard, K.J.Sathyamurthy, S. and Kroeger, D.M.Physica C 391 (2003) p.350.Google Scholar
49Gray, K.Miller, D. and Maroni, V.Coordinated Characterization of Coated Conductors,” presented at the 2003 Annual Superconductivity Peer Review, Washington, DC, July 23–25, 2003.Google Scholar
50Yoshizumi, M.Seleznev, I. and Cima, M.J.Physica C 403 (2004) p.191.Google Scholar
51Li, X.Rupich, M.W.Zhang, W.Nguyen, N.Kodenkandath, T.Schoop, U.Verebelyi, D.T.Thieme, C.Jowett, M.Arendt, P.N.Foltyn, S.R.Holesinger, T.G.Aytug, T.Christen, D.K. and Paranthaman, M.P.Physica C 390 (2003) p. 249.CrossRefGoogle Scholar
52Rupich, M.W.Schoop, U.Thieme, C.L.H.Verebelyi, D.T.Li, X.Zhang, W.Kodenkandath, T.Nguyen, N.Buczek, D.Siegal, E.Lynch, J.Thompson, E.Aldrich, B. and J.Scudiere, “High Performance of 2G HTS Wire Based on a RABiTSTM Template and MOD YBCO Film,” presented at the 106th American Ceramic Society Meeting, Indianapolis, IN, April 18–21, 2004.Google Scholar
53Gouge, J.Lue, J.W.Demko, J.A.Duckworth, R.C.Fisher, P.W.Daumling, M.Lindsay, D.T.Roden, M.L. and Tolbert, J.C.Adv. Cryog. Eng. 49 (2004) p.885Google Scholar
54MacManus-Driscoll, J.L., Foltyn, S.R.Jia, Q.X.Wang, H.Serquis, A.Civale, L.Maiorov, B.Hawley, M.E.Maley, M.P. and Peterson, D.E.NatureMater. 3 (2004) p 439.Google Scholar
55Haugan, T.Barnes, P.N.Maartense, I.Lee, E.J.Sumption, M. and Cobb, C.B.J. Mater. Res. 18 (2003) p. 2618.Google Scholar