Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-28T02:53:23.341Z Has data issue: false hasContentIssue false

Microstructure and mechanical property considerations in additive manufacturing of aluminum alloys

Published online by Cambridge University Press:  10 October 2016

Y. Ding
Affiliation:
Aluminum Research Centre–REGAL, Department of Mining and Materials Engineering, McGill University, Canada; yaoyao.ding@mail.mcgill.ca
J.A. Muñiz-Lerma
Affiliation:
Aluminum Research Centre–REGAL, Department of Mining and Materials Engineering, McGill University, Canada; jose.muniz@mail.mcgill.ca
M. Trask
Affiliation:
Aluminum Research Centre–REGAL, Department of Mining and Materials Engineering, McGill University, Canada; melissa.trask@mail.mcgill.ca
S. Chou
Affiliation:
Aluminum Research Centre–REGAL, Department of Mining and Materials Engineering, McGill University, Canada; shih.chou@mail.mcgill.ca
A. Walker
Affiliation:
Aluminum Research Centre–REGAL, Department of Mining and Materials Engineering, McGill University, Canada; andrew.walker3@mail.mcgill.ca
M. Brochu
Affiliation:
Department of Mining and Materials Engineering, McGill University, Canada; mathieu.brochu@mcgill.ca
Get access

Abstract

Aluminum alloys are in high demand for additive manufacturing (AM) processing. However, the physical properties of Al alloys are less favorable for the production of repeatable and reliable parts, with factors such as surface oxide scales, high thermal conductivity, and large solidification shrinkage. Despite these characteristics, processing strategies have been developed to overcome these hurdles. The objective of this article is to highlight the different microstructure–processing–properties characteristics for the three main families of aluminum alloys: pure, casting, and wrought chemistries. The article focuses on AM processes involving solidification, including powder bed and direct energy deposition for both powder and wire feedstock.

Type
Research Article
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Gibson, I., Rosen, D.W., Stucker, B., Additive Manufacturing Technologies (Springer, New York, 2010).Google Scholar
Chua, C.K., Leong, K.F., 3D Printing and Additive Manufacturing Principles and Applications (World Scientific, Singapore, 2014).Google Scholar
Lampman, S., Ed., Weld Integrity and Performance (ASM International, Materials Park, OH, 1997).CrossRefGoogle Scholar
Gu, D.D., Meiners, W., Wissenbach, K., Popraw, R., Int. Mater. Rev. 57, 133 (2012).CrossRefGoogle Scholar
Louvis, E., Fox, P., Sutcliffe, C.J., J. Mater. Process. Technol. 211, 275 (2011).Google Scholar
Manfredi, D., Calignano, F., Krishnan, M., Canali, R., Ambrosio, E.P., Atzeni, E., Materials 6, 856 (2013).Google Scholar
Cao, X., Wallace, W., Poon, C., Immarigeon, J.P., Mater. Manuf. Proc. 18, 1 (2003).Google Scholar
Olakanmi, E.O., J. Mater. Process. Technol. 213, 1387 (2013).Google Scholar
Ameli, M., Agnew, B., Leung, P.S., Ng, B., Sutcliffe, C.J., Singh, J., McGlen, R., Appl. Therm. Eng. 52, 498 (2013).Google Scholar
Ahuja, B., Karg, M., Nagulin, K., Schmid, M., Phys. Procedia 56, 135 (2014).Google Scholar
Karg, M., Ahuja, B., Kuryntsev, S., Gorunov, A., Schmidt, M., Proc. 25th Solid Freeform Fabr. Symp. (The University of Texas at Austin, Austin, TX, 2014), pp. 420436.Google Scholar
Buchbinder, D., Meiners, W., Wissenbach, K., Poprawe, R., J. Laser Appl. 27, S29205 (2015).Google Scholar
Chou, R., Milligan, J., Paliwal, M., Brochu, M., JOM 67, 590 (2015).Google Scholar
Loh, L.-E., Chua, C.-K., Yeong, W.-Y., Song, J., Mapar, M., Sing, S.-L., Liu, Z.-H., Zhang, D.-Q., Int. J. Heat Mass Transf. 80, 288 (2015).Google Scholar
Yan, C., Hao, L., Hussein, A., Young, P., Huang, J., Zhu, W., Mater. Sci. Eng. A 628, 238 (2015).Google Scholar
Kimura, T., Nakamoto, T., Mater. Des. 89, 1294 (2016).Google Scholar
Mower, T.M., Long, M.J., Mater. Sci. Eng. A 651, 198 (2016).Google Scholar
Zhang, H., Zhu, H., Qi, T., Hu, Z., Zeng, X., Mater. Sci. Eng. A 656, 47 (2016).Google Scholar
Olson, D.L., Siewert, T.A., Liu, S., Edwards, G.R., Eds., ASM Handbook, Volume 6: Welding, Brazing, and Soldering (ASM International, Materials Park, OH, 1993).Google Scholar
Xu, C., Langdon, T.G., J. Mater. Sci. 42, 1542 (2007).Google Scholar
Xu, C., Xia, K., Langdon, T.G., Acta Mater. 55, 2351 (2007).Google Scholar
Zhilyaev, A.P., Oh-ishi, K., Langdon, T.G., McNelley, T.R., Mater. Sci. Eng. A 410–411, 277 (2005).CrossRefGoogle Scholar
Olakanmi, E.O., Cochrane, R.F., Dalgarno, K.W., J. Mater. Process. Technol. 211, 113 (2011).Google Scholar
Aboulkhair, N.T., Everitt, N.M., Ashcroft, I., Tuck, C., Addit. Manuf. 1–4, 77 (2014).Google Scholar
Brandl, E., Heckenberger, U., Holzinger, V., Buchbinder, D., Mater. Des. 34, 159 (2012).Google Scholar
Li, X.P., O’Donnell, K.M., Sercombe, T.B., Addit. Manuf. 10, 10 (2016).Google Scholar
Thijs, L., Kempen, K., Kruth, J.-P., Van Humbeeck, J., Acta Mater. 61, 1809 (2013).Google Scholar
Li, X.P., Wang, X.J., Saunders, M., Suvorova, A., Zhang, L.C., Liu, Y.J., Fang, M.H., Huang, Z.H., Sercombe, T.B., Acta Mater. 95, 74 (2015).Google Scholar
Chou, R., Ghosh, A., Chou, S.C., Paliwal, M., Brochu, M., Addit. Manuf. (forthcoming).Google Scholar
Kempen, K., Thijs, L., Van Humbeeck, J., Kruth, J.P., Phys. Procedia 39, 439 (2012).Google Scholar
Read, N., Wang, W., Essa, K., Attallah, M.M., Mater. Des. 65, 417 (2015).Google Scholar
Zhang, D., “Entwicklung des Selective Laser Melting (SLM) für Aluminiumwerkstoffe,” (Dissertation, RWTH Aachen, Germany, 2001).Google Scholar
Wang, X.J., Zhang, L.C., Fang, M.H., Sercombe, T.B., Mater. Sci. Eng. A 597, 370 (2014).Google Scholar
Prashanth, K.G., Scudino, S., Klauss, H.J., Surreddi, K.B., Löber, L., Wang, Z., Chaubey, A.K., Kühn, U., Eckert, J., Mater. Sci. Eng. A 590, 153 (2014).CrossRefGoogle Scholar
Ma, P., Prashanth, K.G., Scudino, S., Jia, Y., Wang, H., Zou, C., Wei, Z., Eckert, J., Metals 4, 28 (2014).Google Scholar
Buchbinder, D., “Generative Fertigung von Aluminiumbauteilen für die Serienproduktion” (Fraunhofer Institute, Aachen, Germany, 2010).Google Scholar
Javidani, M., Arreguin-Zavala, J., Danovitch, J., Tian, Y., Brochu, M., J. Therm. Spray Technol. (forthcoming).Google Scholar
Dinda, G.P., Dasgupta, A.K., Mazumder, J., Surf. Coat. Technol. 206, 2152 (2012).Google Scholar
Heard, D.W., Brophy, S., Brochu, M., Can. Metall. Q. 51, 302 (2012).Google Scholar
Haselhuhn, A.S., Wijnen, B., Anzalone, G.C., Sanders, P.G., Pearce, J.M., J. Mater. Process. Technol. 226, 50 (2015).Google Scholar
Dunkley, J.J., in ASM Handbook, Volume 7: Powder Metal Technologies and Applications (ASM International, Materials Park, OH, 1998), pp. 3552.Google Scholar
Park, S.-H., Hur, B.-H., Kim, S.-Y., Ahn, D.-K., Ha, D.-I., in 65th World Foundry Congress (2002), pp. 515524.Google Scholar
Gehm, R., “High-Strength Aluminum Powder Developed for Additive Manufacturing in Aerospace, Automotive,” (SAE International, June 4, 2015), available at http://articles.sae.org/14175.Google Scholar
Lumley, R.N., Ed., Fundamentals of Aluminium Metallurgy: Production, Processing and Applications (Woodhead Publishing, Oxford, UK, 2011).Google Scholar
Kou, S., Welding Metallurgy (Wiley, Hoboken, NJ, 2002).Google Scholar
Taminger, K., Hafley, R.A., Proc. 13th Solid Freeform Fabr. Symp. (2002), pp. 482489.Google Scholar
Sercombe, T.B., Schaffer, G.B., Science 301, 1225 (2003).Google Scholar