Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-27T12:23:59.515Z Has data issue: false hasContentIssue false

Monolithic magneto-optical oxide thin films for on-chip optical isolation

Published online by Cambridge University Press:  11 June 2018

Qingyang Du
Affiliation:
Massachusetts Institute of Technology, USA; qydu@mit.edu
Takian Fakhrul
Affiliation:
Massachusetts Institute of Technology, USA; takianf@mit.edu
Yan Zhang
Affiliation:
University of Electronic Science and Technology of China, China; y_zhang@std.uestc.edu.cn
Juejun Hu
Affiliation:
Department of Materials Science and Engineering, Massachusetts Institute of Technology, USA; hujuejun@mit.edu
Caroline A. Ross
Affiliation:
Department of Materials Science and Engineering, Massachusetts Institute of Technology, USA; caross@mit.edu
Get access

Abstract

Optical isolators, devices that only allow unidirectional light propagation, constitute an essential building block for photonic integrated circuits. For near-infrared communications wavelengths, most current isolator designs rely on the incorporation of magneto-optical (MO) materials to break time-reversal symmetry, such as iron garnets or magnetically substituted semiconductors. MO garnets form the backbone of traditional bulk isolators, but suffer from large lattice and thermal mismatch with common semiconductor substrates, which has significantly impeded their integration into on-chip optical isolators. Materials innovations over the past few years have overcome these barriers and enabled monolithic deposition of MO oxide thin films on silicon using techniques such as pulsed laser deposition and magnetron sputtering. On-chip optical isolator devices with polarization diversity in the telecommunication band have been demonstrated based on these materials. This article reviews the latest technological breakthroughs in MO oxide material growth as well as device design and integration strategies toward practical implementation of on-chip optical isolation.

Type
Materials for Nonreciprocal Photonics
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Yu, Z., Fan, S., Nat. Photonics 3, 91 (2009).CrossRefGoogle Scholar
Lira, H., Yu, Z., Fan, S., Lipson, M., Phys. Rev. Lett. 109, 033901 (2012).CrossRefGoogle Scholar
Shi, Y., Yu, Z., Fan, S., Nat. Photonics 9, 388 (2015).CrossRefGoogle Scholar
Karki, D., Stenger, V., Pollick, A., Levy, M., J. Appl. Phys. 121, 233101 (2017).CrossRefGoogle Scholar
Levy, M., IEEE J. Sel. Top. Quantum Electron. 8, 1300 (2002).CrossRefGoogle Scholar
Zhang, C., Dulal, P., Stadler, B., Hutchings, D., Sci. Rep. 7, 5820 (2017).CrossRefGoogle Scholar
Dötsch, H., Bahlmann, N., Zhuromskyy, O., Hammer, M., Wilkens, L., Gerhardt, R., Hertel, P., Popkov, A.F., J. Opt. Soc. Am. B 22, 240 (2005).CrossRefGoogle Scholar
Zaets, W., Ando, K., IEEE Photonics Technol. Lett. 11, 1012 (1999).CrossRefGoogle Scholar
Montoya, J., Parameswaran, K., Hensley, J., Allen, M., Ram, R., J. Appl. Phys. 106, 023108 (2009).CrossRefGoogle Scholar
Tang, L., Drezdzon, S.M., Yoshie, T., Opt. Express 16, 16202 (2008).CrossRefGoogle Scholar
Hammer, J., Ozgur, G., Evans, G., Butler, J., J. Appl. Phys. 100, 103103 (2006).CrossRefGoogle Scholar
Dionne, G., Allen, G., Haddad, P., Ross, C., Lax, B., MIT Lincoln Lab. J. 15, 323 (2005).Google Scholar
Hutchings, D., Holmes, B., Zhang, C., Dulal, P., Block, A., Sung, S., Seaton, N., Stadler, B., IEEE Photonics J. 5, 6602512 (2013).CrossRefGoogle Scholar
Shimizu, H., Nakano, Y., J. Lightwave Technol. 24, 38 (2006).CrossRefGoogle Scholar
Van Parys, W., Van Thourhout, D., Baets, R., Dagens, B., Decobert, J., Le Gouezigou, O., Make, D., Vanheertum, R., Lagae, L., in CLEO (2008), https://www.cleoconference.org/home.Google Scholar
Shintaku, T., Appl. Phys. Lett. 73, 1946 (1998).CrossRefGoogle Scholar
Hemme, H., Dötsch, H., Hertel, P., Appl. Opt. 29, 2741 (1990).CrossRefGoogle Scholar
El-Ganainy, R., Kumar, P., Levy, M., Opt. Lett. 38, 61 (2013).CrossRefGoogle Scholar
Yokoi, H., Mizumoto, T., Shoji, Y., Appl. Opt. 42, 6605 (2003).CrossRefGoogle Scholar
Fujita, J., Levy, M., Osgood, R., Wilkens, L., Dötsch, H., Appl. Phys. Lett. 76, 2158 (2000).CrossRefGoogle Scholar
Shoji, Y., Mizumoto, T., Opt. Express 15, 639 (2007).CrossRefGoogle Scholar
Kono, N., Kakihara, K., Saitoh, K., Koshiba, M., Opt. Express 15, 7737 (2007).CrossRefGoogle Scholar
Zhu, H., Jiang, C., J. Lightwave Technol. 29, 1647 (2011).CrossRefGoogle Scholar
Yang, J., Roh, J., Ok, S., Woo, D., Byun, Y., Lee, W., Mizumoto, T., Lee, S., IEEE Trans. Magn. 41, 3520 (2005).CrossRefGoogle Scholar
Shui, K., Nie, L., Zhang, Y., Peng, B., Xie, J., Deng, L., Bi, L., Opt. Express 24, 12856 (2016).CrossRefGoogle Scholar
Kono, N., Koshiba, M., Opt. Express 13, 9155 (2005).CrossRefGoogle Scholar
Boudiar, T., Payet-Gervy, B., Blanc-Mignon, M.-F., Rousseau, J.-J., Le Berre, M., Joisten, H., J. Magn. Magn. Mater. 284, 77 (2004).CrossRefGoogle Scholar
Shoji, Y., Mizumoto, T., Yokoi, H., Hsieh, I.-W., Osgood, R.M. Jr., Appl. Phys. Lett. 92, 071117 (2008).CrossRefGoogle Scholar
Tien, M.-C., Mizumoto, T., Pintus, P., Kromer, H., Bowers, J.E., Opt. Express 19, 11740 (2011).CrossRefGoogle Scholar
Mizumoto, T., Shoji, Y., Takei, R., Materials 5, 985 (2012).CrossRefGoogle Scholar
Ghosh, S., Keyvavinia, S., Van Roy, W., Mizumoto, T., Roelkens, G., Baets, R., Opt. Express 20, 1839 (2012).CrossRefGoogle Scholar
Stadler, B., Mizumoto, T., IEEE Photonics J. 6, 1 (2014).CrossRefGoogle Scholar
Pintus, P., Huang, D., Zhang, C., Shoji, Y., Mizumoto, T., Bowers, J.E., J. Lightwave Technol. 35, 1429 (2017).CrossRefGoogle Scholar
Zaman, T.R., Guo, X., Ram, R.J., J. Lightwave Technol. 26, 291 (2008).CrossRefGoogle Scholar
Zaman, T., Guo, X., Ram, R., Appl. Phys. Lett. 90, 023514 (2007).CrossRefGoogle Scholar
Baba, K., Takase, F., Miyagi, M., Opt. Commun. 139, 35 (1997).CrossRefGoogle Scholar
Amata, H., Royer, F., Choueikani, F., Jamon, D., Parsy, F., Broquin, J.-E., Neveu, S., Rousseau, J.J., Appl. Phys. Lett. 99, 251108 (2011).CrossRefGoogle Scholar
Bi, L., Hu, J., Jiang, P., Kim, D., Dionne, G., Kimerling, L., Ross, C., Nat. Photonics 5, 758 (2011).CrossRefGoogle Scholar
Bi, L., “Magneto-Optical Oxide Thin Films and Integrated Nonreciprocal Photonic Devices,” PhD dissertation, Massachusetts Institute of Technology (2011).Google Scholar
Goto, T., Onbaşlı, M., Ross, C., Opt. Express 20, 28507 (2012).CrossRefGoogle Scholar
Bi, L., Hu, J., Jiang, P., Kim, H., Kim, D., Onbasli, M., Dionne, G., Ross, C., Materials 6, 5094 (2013).CrossRefGoogle Scholar
Bi, L., Hu, J., Dionne, G., Kimerling, L., Ross, C., in Integrated Optics: Devices, Materials, and Technologies XV (International Society for Optics and Photonics, 2011), vol. 7941, p. 794105.CrossRefGoogle Scholar
Goto, T., Onbasli, M., Kim, D., Singh, V., Inoue, M., Kimerling, L., Ross, C., Ross, C.A., Opt. Express 22, 19047 (2014).CrossRefGoogle Scholar
Onbasli, M., Beran, L., Zahradník, M., Kučera, M., Antoš, R., Mistrík, J., Dionne, G., Veis, M., Ross, C., Sci. Rep. 6, 23640 (2016).CrossRefGoogle Scholar
Hu, J., Sun, X., Du, Q., Onbasli, M., Ross, C., Proc. SPIE 9750 (2016), p. 97500W-1.Google Scholar
Sun, X., Du, Q., Goto, T., Onbasli, M., Kim, D., Aimon, N., Hu, J., Ross, C., ACS Photonics 2, 856 (2015).CrossRefGoogle Scholar
Sung, S., Qi, X., Stadler, B., Appl. Phys. Lett. 87, 121111 (2005).CrossRefGoogle Scholar
Sung, S., Qi, X., Stadler, B., in Conference on Lasers and Electro-Optics (Optical Society of America, 2007), p. CThN5.Google Scholar
Hansen, P., Krumme, J., Thin Solid Films 114, 69 (1984).CrossRefGoogle Scholar
Onbasli, M.C., Goto, T., Sun, X., Huynh, N., Ross, C.A., Opt. Express 22 (21), 25183 (2014).CrossRefGoogle Scholar
Dulal, P., Block, A., Gage, T., Haldren, H., Sung, S., Hutchings, D., Stadler, B., ACS Photonics 3, 1818 (2016).CrossRefGoogle Scholar
Yoshimoto, T., Goto, T., Isogai, R., Nakamura, Y., Takagi, H., Ross, C.A., Inoue, M., Opt. Express 24, 8746 (2016).CrossRefGoogle Scholar
Lim, A.E.-J., Song, J., Fang, Q., Li, C., Tu, X., Duan, N., Chen, K.K., Tern, R.P.-C., Liow, T.-Y., IEEE J. Sel. Top. Quantum Electron. 20, 405 (2014).CrossRefGoogle Scholar
Bi, L., Hu, J., Dionne, G.F., Kimerling, L., Ross, C., Proc. SPIE 7941 (International Society for Optics and Photonics, 2011), p. 794105.Google Scholar
Dai, D., Bauters, J., Bowers, J.E., Light Sci. Appl. 1, e1 (2012).CrossRefGoogle Scholar
Ishida, E., Miura, K., Shoji, Y., Yokoi, H., Mizumoto, T., Nishiyama, N., Arai, S., Opt. Express 25, 452 (2017).CrossRefGoogle Scholar