Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-28T06:51:16.922Z Has data issue: false hasContentIssue false

Nanocomposites for thermoelectrics and thermal engineering

Published online by Cambridge University Press:  04 September 2015

Bolin Liao
Affiliation:
Department of Mechanical Engineering, Massachusetts Institute of Technology, USA; bolin@mit.edu
Gang Chen
Affiliation:
Department of Mechanical Engineering, Massachusetts Institute of Technology, USA; gchen2@mit.edu
Get access

Abstract

The making of composites has served as a working principle of achieving material properties beyond those of their homogeneous counterparts. The classical effective-medium theory models the constituent phases with local properties drawn from the corresponding bulk values, whose applicability becomes questionable when the characteristic size of individual domains in a composite shrinks to nanometer scale, and the interactions between domains induced by interfacial and size effects become important or even dominant. These unique features of nanocomposites have enabled engineering of extraordinary thermoelectric materials with synergistic effects among their constituents in recent years. For other applications requiring high thermal conductivity, however, interfacial and size effects on thermal transport in nanocomposites are not favorable, although certain practical applications often call for the composite approach. Therefore, understanding nanoscale transport in nanocomposites can help determine appropriate strategies for enhancing the thermal performance for different applications. We review the emerging principles of heat and charge transport in nanocomposites and provide working examples from both thermoelectrics and general thermal engineering.

Type
Research Article
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Chu, S., Majumdar, A., Nature 488, 294 (2012).CrossRefGoogle Scholar
Tritt, T.M., Subramanian, M.A., MRS Bull. 31, 188 (2006).CrossRefGoogle Scholar
Tritt, T.M., Böttner, H., Chen, L., MRS Bull. 33, 366 (2008).Google Scholar
Bell, L.E., Science 321, 1457 (2008).Google Scholar
Zebarjadi, M., Esfarjani, K., Dresselhaus, M.S., Ren, Z.F., Chen, G., Energy Environ. Sci. 5, 5147 (2012).CrossRefGoogle Scholar
Dresselhaus, M.S., Chen, G., Tang, M.Y., Yang, R.G., Lee, H., Wang, D.Z., Ren, Z.F., Fleurial, J.-P., Gogna, P., Adv. Mater. 19, 1043 (2007).Google Scholar
Goldsmid, H.J., Introduction to Thermoelectricity (Springer, New York, 2010).Google Scholar
Rayleigh, Lord, Philos. Mag. 34, 481 (1892).CrossRefGoogle Scholar
Maxwell, J.C., A Treatise on Electricity and Magnetism (Clarendon, Oxford, UK, 1873), vol. 1.Google Scholar
Garnett, J.C. Maxwell, Philos. Trans. R. Soc. Lond. Math. Phys. Eng. Sci. 203, 385 (1904).Google Scholar
Datta, S., Electronic Transport in Mesoscopic Systems (Cambridge University Press, Cambridge, UK, 1997).Google Scholar
Chen, G., Nanoscale Energy Transport and Conversion: A Parallel Treatment of Electrons, Molecules, Phonons, and Photons (Oxford University Press, Oxford; New York, 2005).Google Scholar
Nan, C.-W., Birringer, R., Clarke, D.R., Gleiter, H., J. Appl. Phys. 81, 6692 (1997).Google Scholar
Herring, C., J. Appl. Phys. 31, 1939 (1960).CrossRefGoogle Scholar
Bergman, D.J., Levy, O., J. Appl. Phys. 70, 6821 (1991).CrossRefGoogle Scholar
Fu, D., Levander, A.X., Zhang, R., Ager, J.W., Wu, J., Phys. Rev. B 84, 045205 (2011).Google Scholar
Poudel, B., Hao, Q., Ma, Y., Lan, Y., Minnich, A., Yu, B., Yan, X., Wang, D., Muto, A., Vashaee, D., Chen, X., Liu, J., Dresselhaus, M.S., Chen, G., Ren, Z., Science 320, 634 (2008).CrossRefGoogle Scholar
Pei, Y., Shi, X., LaLonde, A., Wang, H., Chen, L., Snyder, G.J., Nature 473, 66 (2011).Google Scholar
Biswas, K., He, J., Blum, I.D., Wu, C.-I., Hogan, T.P., Seidman, D.N., Dravid, V.P., Kanatzidis, M.G., Nature 489, 414 (2012).Google Scholar
Heremans, J.P., Dresselhaus, M.S., Bell, L.E., Morelli, D.T., Nat. Nanotechnol. 8, 471 (2013).Google Scholar
Wu, H.J., Zhao, L.-D., Zheng, F.S., Wu, D., Pei, Y.L., Tong, X., Kanatzidis, M.G., He, J.Q., Nat. Commun. 5, 5515 (2014).Google Scholar
Daembkes, H., Ed., Modulation-Doped Field-Effect Transistors: Principles, Design and Technology (IEEE Press, New York, 1990).Google Scholar
Zebarjadi, M., Joshi, G., Zhu, G., Yu, B., Minnich, A., Lan, Y., Wang, X., Dresselhaus, M., Ren, Z., Chen, G., Nano Lett. 11, 2225 (2011).CrossRefGoogle Scholar
Yu, B., Zebarjadi, M., Wang, H., Lukas, K., Wang, H., Wang, D., Opeil, C., Dresselhaus, M., Chen, G., Ren, Z., Nano Lett. 12, 2077 (2012).Google Scholar
Mahan, G.D., Sofo, J.O., Proc. Natl. Acad. Sci. U.S.A. 93, 7436 (1996).Google Scholar
Lundstrom, M., Fundamentals of Carrier Transport (Cambridge University Press, New York, 2009).Google Scholar
Bohren, C.F., Huffman, D.R., Absorption and Scattering of Light by Small Particles (Wiley-VCH, New York, 1998).CrossRefGoogle Scholar
Schiff, L.I., Quantum Mechanics (McGraw-Hill College, New York, 1968).Google Scholar
Zebarjadi, M., Esfarjani, K., Shakouri, A., Bahk, J.-H., Bian, Z., Zeng, G., Bowers, J., Lu, H., Zide, J., Gossard, A., Appl. Phys. Lett. 94, 202105 (2009).Google Scholar
Bahk, J.-H., Santhanam, P., Bian, Z., Ram, R., Shakouri, A., Appl. Phys. Lett. 100, 012102 (2012).CrossRefGoogle Scholar
Liao, B., Zebarjadi, M., Esfarjani, K., Chen, G., Phys. Rev. Lett. 109, 126806 (2012).Google Scholar
Zebarjadi, M., Liao, B., Esfarjani, K., Dresselhaus, M., Chen, G., Adv. Mater. 25, 1577 (2013).Google Scholar
Shen, W., Tian, T., Liao, B., Zebarjadi, M., Phys. Rev. B 90, 075301 (2014).CrossRefGoogle Scholar
Liao, B., Zebarjadi, M., Esfarjani, K., Chen, G., Phys. Rev. B. 88, 155432 (2013).CrossRefGoogle Scholar
Hicks, L.D., Dresselhaus, M.S., Phys. Rev. B 47, 12727 (1993).Google Scholar
Hicks, L.D., Dresselhaus, M.S., Phys. Rev. B 47, 16631 (1993).Google Scholar
Harman, T.C., Taylor, P.J., Walsh, M.P., LaForge, B.E., Science 297, 2229 (2002).CrossRefGoogle Scholar
Hicks, L.D., Harman, T.C., Sun, X., Dresselhaus, M.S., Phys. Rev. B 53, R10493 (1996).Google Scholar
Venkatasubramanian, R., Siivola, E., Colpitts, T., O’Quinn, B., Nature 413, 597 (2001).CrossRefGoogle Scholar
Chowdhury, I., Prasher, R., Lofgreen, K., Chrysler, G., Narasimhan, S., Mahajan, R., Koester, D., Alley, R., Venkatasubramanian, R., Nat. Nanotechnol. 4, 235 (2009).Google Scholar
Boukai, A.I., Bunimovich, Y., Tahir-Kheli, J., Yu, J.-K., Goddard Iii, W.A., Heath, J.R., Nature 451, 168 (2008).Google Scholar
Ohta, H., Kim, S., Mune, Y., Mizoguchi, T., Nomura, K., Ohta, S., Nomura, T., Nakanishi, Y., Ikuhara, Y., Hirano, M., Hosono, H., Koumoto, K., Nat. Mater. 6, 129 (2007).Google Scholar
Casimir, H.B.G., Physica 5, 495 (1938).CrossRefGoogle Scholar
Chen, G., Tien, C.L., Wu, X., Smith, J.S., J. Heat Transf. 116, 325 (1994).Google Scholar
Lee, S.-M., Cahill, D.G., Venkatasubramanian, R., Appl. Phys. Lett. 70, 2957 (1997).Google Scholar
Borca-Tasciuc, T., Liu, W., Liu, J., Zeng, T., Song, D.W., Moore, C.D., Chen, G., Wang, K.L., Goorsky, M.S., Radetic, T., Gronsky, R., Koga, T., Dresselhaus, M.S., Superlattices Microstruct. 28, 199 (2000).Google Scholar
Capinski, W.S., Maris, H.J., Ruf, T., Cardona, M., Ploog, K., Katzer, D.S., Phys. Rev. B 59, 8105 (1999).Google Scholar
Chen, G., J. Heat Transf. 119, 220 (1997).Google Scholar
Chen, G., Phys. Rev. B 57, 14958 (1998).Google Scholar
Garg, J., Chen, G., Phys. Rev. B 87, 140302 (2013).CrossRefGoogle Scholar
Minnich, A.J., Dresselhaus, M.S., Ren, Z.F., Chen, G., Energy Environ. Sci. 2, 466 (2009).CrossRefGoogle Scholar
Lan, Y., Minnich, A.J., Chen, G., Ren, Z., Adv. Funct. Mater. 20, 357 (2010).Google Scholar
Liu, W., Yan, X., Chen, G., Ren, Z., Nano Energy 1, 42 (2012).Google Scholar
Kim, S.I., Lee, K.H., Mun, H.A., Kim, H.S., Hwang, S.W., Roh, J.W., Yang, D.J., Shin, W.H., Li, X.S., Lee, Y.H., Snyder, G.J., Kim, S.W., Science 348, 109 (2015).CrossRefGoogle Scholar
Hsu, K.F., Loo, S., Guo, F., Chen, W., Dyck, J.S., Uher, C., Hogan, T., Polychroniadis, E.K., Kanatzidis, M.G., Science 303, 818 (2004).Google Scholar
Zhou, M., Li, J.-F., Kita, T., J. Am. Chem. Soc. 130, 4527 (2008).Google Scholar
Li, Z.-Y., Li, J.-F., Adv. Energy Mater. 4, 1300937 (2014).Google Scholar
Quarez, E., Hsu, K.-F., Pcionek, R., Frangis, N., Polychroniadis, E.K., Kanatzidis, M.G., J. Am. Chem. Soc. 127, 9177 (2005).Google Scholar
Biswas, K., He, J., Zhang, Q., Wang, G., Uher, C., Dravid, V.P., Kanatzidis, M.G., Nat. Chem. 3, 160 (2011).Google Scholar
Wang, Y., Lee, K.H., Ohta, H., Koumoto, K., J. Appl. Phys. 105, 103701 (2009).Google Scholar
Wan, C., Gu, X., Dang, F., Itoh, T., Wang, Y., Sasaki, H., Kondo, M., Koga, K., Yabuki, K., Snyder, J., Yang, R., Kuomoto, K., Nat. Mater. 14, 622 (2015).Google Scholar
Broido, D.A., Malorny, M., Birner, G., Mingo, N., Stewart, D.A., Appl. Phys. Lett. 91, 231922 (2007).Google Scholar
Esfarjani, K., Chen, G., Stokes, H.T., Phys. Rev. B 84, 085204 (2011).Google Scholar
Tian, Z., Garg, J., Esfarjani, K., Shiga, T., Shiomi, J., Chen, G., Phys. Rev. B 85, 184303 (2012).CrossRefGoogle Scholar
Luo, T., Garg, J., Shiomi, J., Esfarjani, K., Chen, G., Europhys. Lett. 101, 16001 (2013).Google Scholar
Liao, B., Lee, S., Esfarjani, K., Chen, G., Phys. Rev. B 89, 035108 (2014).CrossRefGoogle Scholar
Lee, S., Esfarjani, K., Mendoza, J., Dresselhaus, M.S., Chen, G., Phys. Rev. B 89, 085206 (2014).Google Scholar
Tian, Z., Lee, S., Chen, G., J. Heat Transf. 135, 061605 (2013).Google Scholar
Qiu, B., Tian, Z., Vallabhaneni, A., Liao, B., Mendoza, J.M., Restrepo, O.D., Ruan, X., Chen, G., Europhys. Lett. 109, 57006 (2015).Google Scholar
Liao, B., Zhou, J., Qiu, B., Dresselhaus, M.S., Chen, G., Phys. Rev. B 91, 235419 (2015).Google Scholar
Slack, G.A., in Solid State Physics, Ehrenreich, H., Seitz, F., Turnbull, D., Eds. (Academic Press, New York, 1979), vol. 34, pp. 171.Google Scholar
Cahill, D.G., Pohl, R.O., Annu. Rev. Phys. Chem. 39, 93 (1988).Google Scholar
Chen, G., in Semiconductors and Semimetals, Tritt, T.M., Ed. (Elsevier, 2001), vol. 71 of Recent Trends in Thermoelectric Materials Research III, pp. 203259.Google Scholar
Chiritescu, C., Cahill, D.G., Nguyen, N., Johnson, D., Bodapati, A., Keblinski, P., Zschack, P., Science 315, 351 (2007).Google Scholar
Ma, J., Parajuli, B.R., Ghossoub, M.G., Mihi, A., Sadhu, J., Braun, P.V., Sinha, S., Nano Lett. 13, 618 (2013).Google Scholar
Zen, N., Puurtinen, T.A., Isotalo, T.J., Chaudhuri, S., Maasilta, I.J., Nat. Commun. 5, 4435 (2014).Google Scholar
Yu, J.-K., Mitrovic, S., Tham, D., Varghese, J., Heath, J.R., Nat. Nanotechnol. 5, 718 (2010).Google Scholar
Hopkins, P.E., Reinke, C.M., Su, M.F., Olsson, R.H., Shaner, E.A., Leseman, Z.C., Serrano, J.R., Phinney, L.M., El-Kady, I., Nano Lett. 11, 107 (2011).Google Scholar
Yang, L., Yang, N., Li, B., Nano Lett. 14, 1734 (2014).CrossRefGoogle Scholar
Li, N., Ren, J., Wang, L., Zhang, G., Hänggi, P., Li, B., Rev. Mod. Phys. 84, 1045 (2012).Google Scholar
Maldovan, M., Nature 503, 209 (2013).CrossRefGoogle Scholar
Gorishnyy, T., Ullal, C.K., Maldovan, M., Fytas, G., Thomas, E.L., Phys. Rev. Lett. 94, 115501 (2005).Google Scholar
Cheng, W., Wang, J., Jonas, U., Fytas, G., Stefanou, N., Nat. Mater. 5, 830 (2006).Google Scholar
Zhu, G., Swinteck, N.Z., Wu, S., Zhang, J.S., Pan, H., Bass, J.D., Deymier, P.A., Banerjee, D., Yano, K., Phys. Rev. B 88, 144307 (2013).Google Scholar
Luckyanova, M.N., Garg, J., Esfarjani, K., Jandl, A., Bulsara, M.T., Schmidt, A.J., Minnich, A.J., Chen, S., Dresselhaus, M.S., Ren, Z., Fitzgerald, E.A., Chen, G., Science 338, 936 (2012).CrossRefGoogle Scholar
Tian, Z., Esfarjani, K., Chen, G., Phys. Rev. B 89, 235307 (2014).Google Scholar
Dames, C., Chen, G., J. Appl. Phys. 95, 682 (2004).Google Scholar
Chalopin, Y., Esfarjani, K., Henry, A., Volz, S., Chen, G., Phys. Rev. B 85, 195302 (2012).CrossRefGoogle Scholar
Sheng, P., Introduction to Wave Scattering, Localization, and Mesoscopic Phenomena (Academic Press, San Diego, 1995).Google Scholar
Prasher, R., Proc. IEEE 94, 1571 (2006).Google Scholar
Wong, C.P., Bollampally, R.S., J. Appl. Polym. Sci. 74, 3396 (1999).Google Scholar
Mamunya, Y.P., Davydenko, V.V., Pissis, P., Lebedev, E.V., Eur. Polym. J. 38, 1887 (2002).Google Scholar
Han, Z., Fina, A., Prog. Polym. Sci. 36, 914 (2011).Google Scholar
Shen, S., Henry, A., Tong, J., Zheng, R., Chen, G., Nat. Nanotechnol. 5, 251 (2010).Google Scholar
Singh, V., Bougher, T.L., Weathers, A., Cai, Y., Bi, K., Pettes, M.T., McMenamin, S.A., Lv, W., Resler, D.P., Gattuso, T.R., Altman, D.H., Sandhage, K.H., Shi, L., Henry, A., Cola, B.A., Nat. Nanotechnol. 9, 384 (2014).Google Scholar
Kim, G.-H., Lee, D., Shanker, A., Shao, L., Kwon, M.S., Gidley, D., Kim, J., Pipe, K.P., Nat. Mater. 14, 295 (2015).Google Scholar
Kirkpatrick, S., Rev. Mod. Phys. 45, 574 (1973).Google Scholar
Wang, J.J., Zheng, R.T., Gao, J.W., Chen, G., Nano Today 7, 124 (2012).Google Scholar
Zheng, R., Gao, J., Wang, J., Feng, S.-P., Ohtani, H., Wang, J., Chen, G., Nano Lett. 12, 188 (2012).Google Scholar
Gao, J.W., Zheng, R.T., Ohtani, H., Zhu, D.S., Chen, G., Nano Lett. 9, 4128 (2009).Google Scholar
Lu, P.J., Zaccarelli, E., Ciulla, F., Schofield, A.B., Sciortino, F., Weitz, D.A., Nature 453, 499 (2008).Google Scholar