Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-10T10:19:03.707Z Has data issue: false hasContentIssue false

Nanoengineered thrusters for the next giant leap in space exploration

Published online by Cambridge University Press:  08 October 2015

Paulo C. Lozano
Affiliation:
Massachusetts Institute of Technology, USA; plozano@mit.edu
Brian L. Wardle
Affiliation:
Massachusetts Institute of Technology, USA; wardle@mit.edu
Padraig Moloney
Affiliation:
Lockheed Martin Space Systems Company, USA; padraig.moloney@lmco.com
Suraj Rawal
Affiliation:
Lockheed Martin Space Systems Company, USA; suraj.p.rawal@lmco.com
Get access

Abstract

The physics underlying operation of cold (room-temperature) ionic-liquid emitter sources for use in propulsion shows that such thrusters are advantaged relative to all other “rockets” because of the direct scaling of power with emitter array density. Nanomaterials and their integration through nano- and microfabrication can propel these charged-particle sources to the forefront and open up new applications including mass-efficient in-orbit satellite propulsion and high-thrust-density deep-space exploration. Analyses of electrostatic, fluid-dynamic, and electrochemical limits all suggest that arrays of such ionic-liquid thrusters can reach thrust densities beyond most in-space propulsion concepts, with a limit on nanoporous thruster packing density of ∼1 μm due to ionic-liquid viscous flow and electrochemistry. Nanoengineered materials and manufacturing schemes are suggested for the implementation of microfabricated and nanostructured thruster arrays.

Type
Research Article
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Jahn, R.G., Physics of Electric Propulsion (McGraw-Hill, New York, 1968).Google Scholar
Martinez-Sanchez, M., Pollard, J.E., J. Propul. Power 14, 688 (1998).CrossRefGoogle Scholar
Ahedo, E., Plasma Phys. Control. Fusion 53, 124037 (2011).CrossRefGoogle Scholar
Goebel, D.M., Watkins, R.M., Jameson, K.K., J. Propul. Power 23, 552 (2007).CrossRefGoogle Scholar
Warner, D.J., Branam, R.D., Hargus, W.A., J. Propul. Power 26, 130 (2010).CrossRefGoogle Scholar
Farnell, C.C., Farnell, C.C., Farnell, S.C., Williams, J.D., “Electrostatic Analyzers with Application to Electric Propulsion Testing,” presented at the 33rd International Electric Propulsion Conference, Washington, DC, October 6–10, 2013, IEPC-2013-300.Google Scholar
Rand, L.P., Williams, J.D., IEEE Trans. Plasma Sci. 43, 190 (2015).CrossRefGoogle Scholar
Ziemer, J.K., Merkowitz, S.M., “Microthrust Propulsion of the LISA Mission,” presented at the 40th AIAA Joint Propulsion Conference, Fort Lauderdale, FL, July 12–14, 2004.CrossRefGoogle Scholar
Waydo, S., Henry, D., Campbell, M., Aerospace Conf. Proc. 431, 1435-431-445 (IEEE, 2002).Google Scholar
Roco, M.C., Mirkin, C.A., Hersam, M.C., Nanotechnology Research Directions for Societal Needs in 2020: Retrospective and Outlook (Springer, Boston, 2011), vol. 1.CrossRefGoogle Scholar
“Report on Technology Horizons: A Vision for Air Force Science and Technology During 2010–2030” (Report AF/ST-TR-10–01, Defense Technical Information Center, Washington, DC, 2010).Google Scholar
NASA Space Technology Roadmaps and Priorities: Restoring NASA's Technological Edge and Paving the Way for a New Era in Space (National Academies Press, Washington, DC, 2012).Google Scholar
Jahn, R.G., Physics of Electric Propulsion (McGraw-Hill, New York, 1968).Google Scholar
Welton, T., Chem. Rev. 99, 2071 (1999).CrossRefGoogle Scholar
Taylor, G., Proc. R. Soc. London, A 280, 383 (1964).Google Scholar
Lozano, P., Martinez-Sanchez, M., J. Colloid Interface Sci. 282, 415 (2005).CrossRefGoogle Scholar
Lozano, P.C., J. Phys. D Appl. Phys. 39, 126 (2006).CrossRefGoogle Scholar
Velásquez-García, L.F., Akinwande, A.I., Martinez-Sanchez, M., J. Microelectromech. Syst. 15, 1272 (2006).CrossRefGoogle Scholar
Courtney, D.G., Li, H., Lozano, P.C., J. Microelectromech. Syst. 22, 471 (2013).CrossRefGoogle Scholar
Dandavino, S., Ataman, C., Ryan, C.N., Chakraborty, S., Courtney, D., Stark, J.P.W., Shea, H., J. Micromech. Microeng. 24, 075011 (2014).CrossRefGoogle Scholar
Lozano, P., Martínez-Sánchez, M., J. Colloid Interface Sci. 280, 149 (2004).CrossRefGoogle Scholar
Spearing, S., Acta Mater. 48, 179 (2000).CrossRefGoogle Scholar
Romero-Sanz, I., Bocanegra, R., de la Mora, J.F., Gamero-Castano, M., J. Appl. Phys. 94, 3599 (2003).CrossRefGoogle Scholar
Lozano, P., Martínez-Sánchez, M., Lopez-Urdiales, J.M., J. Colloid Interface Sci. 276, 392 (2004).CrossRefGoogle Scholar
Courtney, D.G., Li, H.Q., Lozano, P., J. Phys. D Appl. Phys. 45, 485203 (2012).CrossRefGoogle Scholar
Brikner, N., Lozano, P.C., Appl. Phys. Lett. 101, 193504 (2012).CrossRefGoogle Scholar
Canonica, M.D., Wardle, B.L., Lozano, P.C., J. Micromech. Microeng. 25, 015017 (2015).CrossRefGoogle Scholar
Krejci, D., Mier-Hicks, F., Fucetola, C., Hsu-Schouten, A., Martel, F., Lozano, P., “Design and Characterization of a Scalable Ion Electrospray Propulsion System,” presented at the 34th International Electric Propulsion Conference, July 4–10, 2015, Hyogo-Kobe, Japan, IEPC-2015-149.Google Scholar
Lachman, N., Xu, H., Zhou, Y., Ghaffari, M., Lin, M., Bhattacharyya, D., Ugur, A., Gleason, K.K., Zhang, Q.M., Wardle, B.L., Adv. Mater. Interfaces 1, 1400076 (2014).CrossRefGoogle Scholar
Zhou, Y., Ghaffari, M., Lin, M., Parsons, E.M., Liu, Y., Wardle, B.L., Zhang, Q.M., Electrochim. Acta 111, 608 (2013).CrossRefGoogle Scholar
Mackus, A.J.M., Bol, A.A., Kessels, W.M.M., Nanoscale 6, 10941 (2014).CrossRefGoogle Scholar
Knez, M., Nielsch, K., Niinistö, L., Adv. Mater. 19, 3425 (2007).CrossRefGoogle Scholar