Hostname: page-component-78c5997874-8bhkd Total loading time: 0 Render date: 2024-11-11T07:24:32.854Z Has data issue: false hasContentIssue false

Nanoengineering of concrete via topological constraint theory

Published online by Cambridge University Press:  10 January 2017

Mathieu Bauchy*
Affiliation:
Department of Civil and Environmental Engineering, University of California, Los Angeles, USA; bauchy@ucla.edu
Get access

Abstract

Topological constraint theory is a convenient theoretical framework to predict structure–property relationships in glasses and identify optimal compositions featuring targeted macroscopic properties. Although introduced for chalcogenide glasses, molecular rigidity concepts have since been applied with great success to new families of materials, such as silicate glasses, phase-change materials, and proteins. Here, we review recent developments in the extension of rigidity theory to concrete, which is by far the most heavily manufactured material in the world. By capturing the important atomic topology while filtering out less relevant structural details of calcium–silicate–hydrate, the binding phase of concrete, topological constraint theory was used to nanoengineer concrete from the atomic scale by predicting the compositional dependence of hardness, toughness, and creep. As such, rigidity concepts represent a promising tool to accelerate the discovery of new materials with tailored properties.

Type
Research Article
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ulm, F.-J., Arab. J. Sci. Eng. 37, 481 (2012).Google Scholar
Van Ruijven, B.J., Van Vuuren, D.P., Boskaljon, W., Neelis, M.L., Saygin, D., Patel, M.K., Resour. Conserv. Recy. 112, 15 (2016).Google Scholar
Pour-Ghaz, M., Int. J. Appl. Ceram. Technol. 10, 584 (2013).Google Scholar
Taylor, H.F.W., Cement Chemistry (Thomas Telford, London, 1997).Google Scholar
Wray, P., Am. Ceram. Soc. Bull. 91, 47 (2012).Google Scholar
Sanchez, F., Sobolev, K., Constr. Build. Mater. 24, 2060 (2010).CrossRefGoogle Scholar
Mauro, J.C., Ellison, A.J., Pye, L.D., Int. J. Appl. Glass Sci. 4, 64 (2013).CrossRefGoogle Scholar
Mauro, J.C., Tandia, A., Vargheese, K.D., Mauro, Y.Z., Smedskjaer, M.M., Chem. Mater. 28, 4267 (2016).Google Scholar
Jennings, H.M., Mater. Struct. 37, 59 (2004).Google Scholar
Ioannidou, K., Krakowiak, K.J., Bauchy, M., Hoover, C.G., Masoero, E., Yip, S., Ulm, F.J., Levitz, P., Pellenq, R.J.-M., Del Gado, E., Proc. Natl. Acad. Sci. U.S.A. 113, 2029 (2016).Google Scholar
Scrivener, K.L., Juilland, P., Monteiro, P.J.M., Cem. Concr. Res. A 78, 38 (2015).Google Scholar
Pellenq, R.J.-M., Kushima, A., Shahsavari, R., Van Vliet, K.J., Buehler, M.J., Yip, S., Ulm, F.J., Proc. Natl. Acad. Sci. U.S.A. 106, 16102 (2009).Google Scholar
Abdolhosseini Qomi, M.J., Krakowiak, K.J., Bauchy, M., Stewart, K.L., Shahsavari, R., Jagannathan, D., Brommer, D.B., Baronnet, A., Buehler, M.J., Yip, S., Ulm, F.-J., Van Vliet, K.J., Pellenq, R.J.-.M., Nat. Commun. 5, 4960 (2014).Google Scholar
Abdolhosseini Qomi, M.J., Bauchy, M., Ulm, F.-J., Pellenq, R.J.-M., J. Chem. Phys. 140, 054515 (2014).Google Scholar
Bauchy, M., Laubie, H., Qomi, M.A., Hoover, C.G., Ulm, C.G., F.J., Pellenq, R.J.-M., J. Non Cryst. Solids 419, 58 (2015).Google Scholar
Abdolhosseini Qomi, M.J., Ulm, F.-J., Pellenq, R.J.-M., Phys. Rev. Appl. 3, 064010 (2015).Google Scholar
Bauchy, M., Wang, M., Yu, Y., Wang, B., Anoop Krishnan, N.M., Ulm, F.-J., Pellenq, R., Condens. Matter (2016), https://arxiv.org/abs/1605.05043.Google Scholar
Abdolhosseini Qomi, M.J., Bauchy, M., Pellenq, R.J.-M., Ulm, F.-J., “Applying Tools from Glass Science to Study Calcium-Silicate-Hydrates,” Mechanics and Physics of Creep, Shrinkage, and Durability of Concrete: A Tribute to Zdenek P. Bazant: Proc. Ninth Int. Conf. Creep, Shrinkage Durability Mech. (CONCREEP-9), (ASCE Publications, Washington, DC, 2013), pp. 7885.Google Scholar
Bauchy, M., Abdolhosseini Qomi, M.J., Ulm, F.-J., Pellenq, R.J.-M., J. Chem. Phys. 140, 214503 (2014).CrossRefGoogle Scholar
Bauchy, M., Abdolhosseini Qomi, M.J., Bichara, C., Ulm, F.-J., Pellenq, R.J.-M., J. Phys. Chem. C 118, 12485 (2014).Google Scholar
Bauchy, M., Abdolhosseini Qomi, M.J., Pellenq, R.J.M., Ulm, F.J., in Computational Modelling of Concrete Structures (CRC Press, Boca Raton, FL, 2014), p. 169.Google Scholar
Bauchy, M., Qomi, M.J.A., Bichara, C., Ulm, F.-J., Pellenq, R.J.-M., Phys. Rev. Lett. 114, 125502 (2015).Google Scholar
Qomi, M.J.A., Bauchy, M., Ulm, F.-J., Pellenq, R., in Nanotechnology in Construction, Sobolev, K., Shah, S.P., Eds. (Springer, New York, 2015), p. 99.Google Scholar
Hamid, S., Z. Kristallogr. 154, 189 (1981).Google Scholar
Skinner, L.B., Chae, S.R., Benmore, C.J., Wenk, H.R., Monteiro, P.J.M., Phys. Rev. Lett. 104, 195502 (2010).CrossRefGoogle Scholar
Meral, C., Benmore, C.J., Monteiro, P.J.M., Cem. Concr. Res. 41, 696 (2011).Google Scholar
Soyer-Uzun, S., Chae, S.R., Benmore, C.J., Wenk, H.-R., Monteiro, P.J.M., J. Am. Ceram. Soc. 95, 793 (2012).Google Scholar
Mauro, J.C., Front. Mater. 1, 20 (2014).Google Scholar
Mauro, J.C., Am. Ceram. Soc. Bull. 90, 31 (2011).Google Scholar
Bauchy, M., Am. Ceram. Soc. Bull. 91, 34 (2012).Google Scholar
Bauchy, M., Micoulaut, M., Celino, M., Le Roux, S., Boero, M., Massobrio, C., Phys. Rev. B Condens. Matter 84, 054201 (2011).CrossRefGoogle Scholar
Bauchy, M., Micoulaut, M., J. Non Cryst. Solids 357, 2530 (2011).Google Scholar
Bauchy, M., Micoulaut, M., J. Non Cryst. Solids 377, 34 (2013).Google Scholar
Bauchy, M., Micoulaut, M., Europhys. Lett. 104, 56002 (2013).Google Scholar
Bauchy, M., Micoulaut, M., Nat. Commun. 6, 6398 (2015).Google Scholar
Bauchy, M., Micoulaut, M., Phys. Rev. Lett. 110, 095501 (2013).Google Scholar
Bauchy, M., Micoulaut, M., Boero, M., Massobrio, C., Phys. Rev. Lett. 110, 165501 (2013).Google Scholar
Bauchy, M., Kachmar, A., Micoulaut, M., J. Chem. Phys. 141, 194506 (2014).Google Scholar
Micoulaut, M., Bauchy, M., Flores-Ruiz, H., in Molecular Dynamics Simulations of Disordered Materials, Massobrio, C., Du, J., Bernasconi, M., Salmon, P.S., Eds. (Springer, New York, 2015), p. 275.CrossRefGoogle Scholar
Micoulaut, M., Bauchy, M., Phys. Status Solidi B 250, 976 (2013).Google Scholar
Micoulaut, M., Kachmar, A., Bauchy, M., Le Roux, S., Massobrio, C., Boero, M., Phys. Rev. B Condens. Matter 88, 054203 (2013).Google Scholar
Bauchy, M., J. Non Cryst. Solids 377, 39 (2013).Google Scholar
Smedskjaer, M.M., Bauchy, M., Mauro, J.C., Rzoska, S.J., Bockowski, M., J. Chem. Phys. 143, 164505 (2015).Google Scholar
Smedskjaer, M.M., Mauro, J.C., Yue, Y., Phys. Rev. Lett. 105, 115503 (2010).CrossRefGoogle Scholar
Oliver, W.C., Pharr, G.M., J. Mater. Res. 7, 1564 (1992).Google Scholar
Swiler, D., Varshneya, A.K., Callahan, R., J. Non Cryst. Solids 125, 250 (1990).Google Scholar
Wang, B., Yu, Y., Lee, Y.J., Bauchy, M., Front. Mater. 2, 11 (2015).Google Scholar
Wang, B., Yu, Y., Wang, M., Mauro, J.C., Bauchy, M., Phys. Rev. B Condens. Matter 93, 064202 (2016).Google Scholar
Smedskjaer, M.M., Bauchy, M., Appl. Phys. Lett. 107, 141901 (2015).Google Scholar
Yu, Y., Wang, B., Lee, Y.J., Bauchy, M., Mater. Res. Soc. Symp. Proc. 1757, pp. mrsf141757 (Materials Research Society, Warendale, PA, 2015).Google Scholar
Bauchy, M., Wang, B., Wang, M., Yu, Y., Qomi, M.J.A., Smedskjaer, M., Bichara, C., Ulm, F.-J., Pellenq, R., Acta Mater. 121, 234 (2016).Google Scholar
Boolchand, P., Georgiev, D.G., Goodman, B., J. Optoelectron. Adv. Mater. 3, 703 (2001).Google Scholar
Mantisi, B., Bauchy, M., Micoulaut, M., Phys. Rev. B Condens. Matter 92, 134201 (2015).Google Scholar
Guin, J.-P., Rouxel, T., Sanglebœuf, J.-C., Melscoët, I., Lucas, J., J. Am. Ceram. Soc. 85, 1545 (2002).Google Scholar
Bauchy, M., J. Chem. Phys. 137, 044510 (2012).Google Scholar
Bažant, Z.P., Hubler, M.H., Yu, Q., Concrete International 33, 44 (2011).Google Scholar
Bauchy, M., Masoero, E., Ulm, F.-J., Pellenq, R., CONCREEP 10, pp. 511516 (American Society of Civil Engineers, Reston, VA, 2015).Google Scholar
Masoero, E., Bauchy, M., Del Gado, E., Manzano, H., Pellenq, R.M., Ulm, F.-J., Yip, S., CONCREEP 10, pp. 555564 (American Society of Civil Engineers, Reston, VA, 2015).Google Scholar
Pignatelli, I., Kumar, A., Alizadeh, R., Le Pape, Y., Yann, , Bauchy, M., Sant, G., J. Chem. Phys. 145, 054701 (2016).Google Scholar
Chen, P., Boolchand, P., Georgiev, D.G., J. Phys. Condens. Matter 22, 065104 (2010).Google Scholar
Bauchy, M., Micoulaut, M., Phys. Rev. B Condens. Matter 83, 184118 (2011).Google Scholar
Bauchy, M., Guillot, B., Micoulaut, M., Sator, N., Chem. Geol. 346, 47 (2013).Google Scholar
Pignatelli, I., Kumar, A., Bauchy, M., Sant, G., Langmuir 32, 4434 (2016).Google Scholar
Pignatelli, I., Kumar, A., Field, K.G., Wang, B., Yu, Y., Le Pape, Y., Bauchy, M., Sant, G., Sci. Rep. 6, 20155 (2016).Google Scholar
Wang, B., Yu, Y., Pignatelli, I., Sant, G., Bauchy, M., J. Chem. Phys. 143, 024505 (2015).Google Scholar
Yu, Y., Wang, M., Zhang, D., Wang, B., Sant, G., Bauchy, M., Phys. Rev. Lett. 115, 165901 (2015).Google Scholar
Wang, M., Wang, B., Bechgaard, T.K., Mauro, J.C., Rzoska, S.J., Bockowski, M., Smedskjaer, M.M., Bauchy, M., J. Non Cryst. Solids 454, 46 (2016).Google Scholar
Wang, M., Bauchy, M., Condens. Matter Mater. Sci. (2015), available at http://arxiv.org/abs/1505.07880.Google Scholar
Wang, M., Wang, B., Krishnan, N.M.A., Yu, Y., Smedskjaer, M.M., Mauro, J.C., Sant, G., Bauchy, M., J. Non Cryst. Solids (forthcoming).Google Scholar