Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-27T10:04:20.090Z Has data issue: false hasContentIssue false

Nanoscale impedance and complex properties in energy-related systems

Published online by Cambridge University Press:  12 July 2012

Wonyoung Lee
Affiliation:
Nuclear Science and Engineering Department, Massachusetts Institute of Technology; leewy@mit.edu
Fritz B. Prinz
Affiliation:
Mechanical Engineering and Materials Science and Engineering Departments, Stanford University; fbp@cdr.stanford.edu
Xi Chen
Affiliation:
Materials Science and Engineering, University of Pennsylvania; xich@seas.upenn.edu
S. Nonnenmann
Affiliation:
Materials Science and Engineering, University of Pennsylvania; ssn@seas.upenn.edu
Dawn A. Bonnell
Affiliation:
Materials Science and Engineering, University of Pennsylvania; bonnell@lrsm.upenn.edu
Ryan P. O’Hayre
Affiliation:
Metallurgical and Materials Engineering, Colorado School of Mines; rohayre@mines.edu
Get access

Abstract

Atomic force microscopy (AFM)-based impedance spectroscopy provides localized impedance information of materials and interfaces at the nanoscale by utilizing the conductive AFM tip as a moving electrode to detect current response as a function of time and frequency under controlled environments. This capability enables AFM-based nanoscale impedance measurements to play a unique role in enhancing our understanding of many electronic and electrochemical devices. This article introduces the central concepts of AFM-based impedance measurement and reviews recent examples applying this technique to a variety of functional materials systems, in particular focusing on fuel cells, lithium-ion batteries, photoactive biomembranes, as well as other application examples.

Type
Research Article
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.O’Hayre, R., Cha, S.-W., Colella, W., Prinz, F.B., Fuel Cell Fundamentals (Wiley, New York, 2006).Google Scholar
2.Nazri, G.-A., Pistoia, G., Eds., Lithium Batteries: Science and Technology (Springer, New York, 2009).Google Scholar
3.Sawa, A., Mater. Today 11, 28 (2008).CrossRefGoogle Scholar
4.Strukov, D.B., Snider, G.S., Stewart, D.R., Williams, R.S., Nature 453, 80 (2008).CrossRefGoogle Scholar
5.Joachim, C., Gimzewski, J.K., Aviram, A., Nature 408, 541 (2000).CrossRefGoogle Scholar
6.He, R., Yang, P., Nat. Nanotechnol. 1, 42 (2006).CrossRefGoogle Scholar
7.Nonnenmann, S.S., Gallo, E.M., Spanier, J.E., Appl. Phys. Lett. 97, 102904 (2010).CrossRefGoogle Scholar
8.O’Hayre, R., Lee, M., Prinz, F.B., Kalinin, S.V., in Scanning Probe Microscopy: Electrical and Electromechanical Phenomena at the Nanoscale, Kalinin, S.V., Gruverman, A., Eds. (Springer, New York 2007), vol. 1.Google Scholar
9.Shao, R., Kalinin, S.V., Bonnell, D.A., Phys. Rev. Lett. 95, 197601 (2003).CrossRefGoogle Scholar
10.O’Hayre, R., Lee, M., Prinz, F.B., J. Appl. Phys. 95, 8382 (2004).CrossRefGoogle Scholar
11.Kalinin, S.V., Bonnell, D.A., Appl. Phys. Lett. 78, 1306 (2001).CrossRefGoogle Scholar
12.Shao, R., Bonnell, D.A., Jpn. J. Appl. Phys. 43, 4471 (2004).CrossRefGoogle Scholar
13.O’Hayre, R., Feng, G., Nix, W.D., Prinz, F.B., J. Appl. Phys. 96, 3540 (2004).CrossRefGoogle Scholar
14.Bussian, D.A., O’Dea, J.R., Metiu, H., Buratto, S.K., Nano Lett. 7, 227 (2007).CrossRefGoogle Scholar
15.Aleksandrova, E., Hiesgen, R., Friedrich, K.A., Roduner, E., Phys. Chem. Chem. Phys. 9, 2735 (2007).CrossRefGoogle Scholar
16.Aleksandrova, E., Hink, S., Hiesgen, R., Roduner, E., J. Phys. Condens. Matter 23, 234109 (2011).CrossRefGoogle Scholar
17.Xie, X., Kwon, O., Zhu, D.-M., Nguyen, T.V., Lin, G., J. Phys. Chem. B 111, 6134 (2007).CrossRefGoogle Scholar
18.Kang, Y., Kwon, O., Xie, X., Zhu, D.-M., J. Phys. Chem. B 113, 15040 (2009).CrossRefGoogle Scholar
19.Kwon, O., Kang, Y., Wu, S., Zhu, D.-M., J. Phys. Chem. B 114, 5365 (2010).CrossRefGoogle Scholar
20.Kwon, O., Wu, S., Zhu, D.-M., J. Phys. Chem. B 114, 14989 (2010).CrossRefGoogle Scholar
21.He, Q.G., Kusoglu, A., Lucas, I.T., Clark, K., Weber, A.Z., Kostecki, R., J. Phys. Chem. B 115, 11650 (2011).CrossRefGoogle Scholar
22.Vels Hansen, K., Jacobsen, T., Nørgaard, A.-M., Ohmer, N., Mogensena, M., Electrochem. Solid-State Lett. 12, B144 (2009).CrossRefGoogle Scholar
23.Wu, Y., Vels Hansen, K., Jacobsen, T., Mogensen, M., Solid State Ionics 197, 32 (2011).CrossRefGoogle Scholar
24.Louie, M.W., Hightower, A., Haile, S.M., ACS Nano 4, 2811 (2010).CrossRefGoogle Scholar
25.Lee, W., Lee, M., Kim, Y.-B., Prinz, F.B., Nanotechnology 20, 445706 (2009).CrossRefGoogle Scholar
26.Huang, H., Gür, T.M., Saito, Y., Prinz, F., Appl. Phys. Lett. 89, 143107 (2006).CrossRefGoogle Scholar
27.Goodenough, J.B., Annu. Rev. Mater. Res. 33, 91 (2003).CrossRefGoogle Scholar
28.Wang, S., Kobayashi, T., Dokiya, M., Hashimoto, T., J. Electrochem. Soc. 147, 3606 (2000).CrossRefGoogle Scholar
29.Vullum, F., Teeters, D., J. Power Sources 146, 804 (2005).CrossRefGoogle Scholar
30.Vullum, F., Teeters, D., Nytén, A., Thomas, J., Solid State Ionics 177, 2833 (2006).CrossRefGoogle Scholar
31.Bayet, E., Huet, F., Keddam, M., Ogle, K., Takenouti, H., J. Electrochem. Soc. 144, L87 (1997).CrossRefGoogle Scholar
32.Bhattacharyya, A.J., Fleig, J., Guo, Y.-G., Maier, J., Adv. Mater. 17, 2630 (2005).CrossRefGoogle Scholar
33.Layson, A., Gadad, S., Teeters, D., Electrochim. Acta 48, 2207 (2003).CrossRefGoogle Scholar
34.Kushida, K., Kuriyama, K., Appl. Phys. Lett. 84, 3456 (2004).CrossRefGoogle Scholar
35.Zhu, J., Feng, J., Lu, L., Zeng, K., J. Power Sources 197, 224 (2012).CrossRefGoogle Scholar
36.Kostecki, R., Kong, F., Matsuo, Y., McLarnon, F., Electrochim. Acta 45, 225 (1999).CrossRefGoogle Scholar
37.Matsuo, Y., Kostecki, R., McLarnon, F., J. Electrochem. Soc. 148, A687 (2001).CrossRefGoogle Scholar
38.Lipson, A.L., Ginder, R.S., Hersam, M.C., Adv. Mater. 23, 5613 (2011).CrossRefGoogle Scholar
39.Kuriyama, K., Onoue, A., Yuasa, Y., Kushida, K., Surf. Sci. 601, 2256 (2007).CrossRefGoogle Scholar
40.Thackeray, M.M., David, W.I.F., Bruce, P.G., Goodenough, J.B., Mat. Res. Bull. 18, 461 (1983).CrossRefGoogle Scholar
41.Davis, J.J., Morgan, D.A., Wrathmell, C.L., Axford, D.N., Zhao, J., Wang, N., J. Mater. Chem. 15, 2160 (2005).CrossRefGoogle Scholar
42.Kathan-Galipeau, K., Nanayakkara, S., O’Brian, P.A., Nikiforov, M., Discher, B.M., Bonnell, D.A., ACS Nano 5, 4835 (2011).CrossRefGoogle Scholar
43.Pingree, L.S.C., Hersam, M.C., Appl. Phys. Lett. 87, 233117 (2005).CrossRefGoogle Scholar
44.Fumagalli, L., Ferrari, G., Sampietro, M., Gomila, G., Nano Lett. 9, 1604 (2009).CrossRefGoogle Scholar
45.Arutunow, A., Darowicki, K., Zielinski, A., Electrochim. Acta 56, 2372 (2011).CrossRefGoogle Scholar
46.Darowicki, K., Szocinski, M., Zielinski, A., Electrochim. Acta 55, 3741 (2010).CrossRefGoogle Scholar
47.Lee, M., O’Hayre, R., Prinz, F.B., Gur, T.M., Appl. Phys. Lett. 85, 3552 (2004).CrossRefGoogle Scholar
48.Lee, W., Prinz, F.B., J. Electrochem. Soc. 156, G125 (2009).CrossRefGoogle Scholar
49.Lee, W., Dasgupta, N.P., Trejo, O., Lee, J.-R., Hwang, J., Usui, T., Prinz, F.B., Langmuir 26, 6845 (2010).CrossRefGoogle Scholar
50.Kruempelmann, J., Balabajew, M., Gellert, M., Roling, B., Solid State Ionics 198, 16 (2011).CrossRefGoogle Scholar
51.Shao, R., Kalinin, S.V., Bonnell, D.A., Appl. Phys. Lett. 82, 1869 (2003).CrossRefGoogle Scholar
52.Kalinin, S.V., Bonnell, D.A., Nano Lett. 4, 555 (2004).CrossRefGoogle Scholar
53.Kalinin, S.V., Bonnell, D.A., Phys. Rev. B 70, 235304 (2004).CrossRefGoogle Scholar
54.Szot, K., Speier, W., Bihlmayer, G., Waser, R., Nat. Mater. 5, 312 (2006).CrossRefGoogle Scholar
55.Choi, B.J., Jeong, D.S., Kim, S.K., Rohde, C., Choi, S., Oh, J.H., Kim, H.J., Hwang, C.S., Szot, K., Waser, R., Reichenberg, B., Tiedke, S., J. Appl. Phys. 98, 033715 (2005).CrossRefGoogle Scholar
56.Lee, D., Seong, D.-J., Jo, I., Xiang, F., Dong, R., Oh, S., Hwang, H., Appl. Phys. Lett. 90, 122104 (2007).CrossRefGoogle Scholar
57.Lee, M.H., Hwang, C.S., Nanoscale 3, 490 (2011).CrossRefGoogle Scholar
58.Darowicki, K., Zielinski, A., Electrochim. Acta 55, 7761 (2010).CrossRefGoogle Scholar
59.Kalinin, S.V., Shin, J., Jesse, S., Geohegan, D., Baddorf, A.P., Lilach, Y., Moskovits, M., Kolmakov, A., J. Appl. Phys. 98, 044503 (2005).CrossRefGoogle Scholar