Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-13T07:21:42.831Z Has data issue: false hasContentIssue false

Nanostructured paper for flexible energy and electronic devices

Published online by Cambridge University Press:  12 April 2013

Guangyuan Zheng
Affiliation:
Department of Chemical Engineering, Stanford University; gyzheng@stanford.edu
Yi Cui
Affiliation:
Department of Materials Science and Engineering, Stanford University; yicui@stanford.edu
Erdem Karabulut
Affiliation:
KTH Royal Institute of Technology, Sweden; kerdem@kth.se
Lars Wågberg
Affiliation:
KTH Royal Institute of Technology, Sweden; wagberg@kth.se
Hongli Zhu
Affiliation:
Department of Materials Science and Engineering, University of Maryland; hongli@umd.edu
Liangbing Hu
Affiliation:
Department of Materials Science and Engineering, University of Maryland; binghu@umd.edu
Get access

Abstract

Cellulose is one of the most abundant organic materials on earth, and cellulose paper is ubiquitous in our daily life. Re-engineering cellulose fibers at the nanoscale will allow this renewable material to be applied to advanced energy storage systems and optoelectronic devices. In this article, we examine the recent development of nanofibrillated cellulose and discuss how the integration of other nanomaterials leads to a wide range of applications. The unique properties of nanofibrillated cellulose enable multi-scale structuring of the functional composites, which can be tailored to develop new concepts of energy and electronic devices. Tapping into the nanostructured materials offered by nature can offer many opportunities that will take nanotechnology research to a new level.

Type
Research Article
Copyright
Copyright © Materials Research Society 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Klemm, D., Kramer, F., Moritz, S., Lindström, T., Ankerfors, M., Gray, D., Dorris, A., Angew. Chem. Int. Ed. 50, 5438 (2011).CrossRefGoogle Scholar
Moon, R.J., Martini, A., Nairn, J., Simonsen, J., Youngblood, J., Chem. Soc. Rev. 40, 3941 (2011).CrossRefGoogle Scholar
Tobjörk, D., Österbacka, R., Adv. Mater. (Weinheim, Ger.) 23, 1935 (2011).CrossRefGoogle Scholar
Nyholm, L., Nyström, G., Mihranyan, A., Strømme, M., Adv. Mater. (Weinheim, Ger.) 23, 3751 (2011).Google Scholar
Russo, A., Ahn, B.Y., Adams, J.J., Duoss, E.B., Bernhard, J.T., Lewis, J.A., Adv. Mater. (Weinheim, Ger.) 23, 3426 (2011).CrossRefGoogle Scholar
Hu, L., Choi, J.W., Yang, Y., Jeong, S., La Mantia, F., Cui, L.-F., Cui, Y., Proc. Natl. Acad. Sci. U.S.A. 106, 21490 (2009).CrossRefGoogle Scholar
Peng, C.Q., Thio, Y.S., Gerhardt, R.A., Nanotechnology 19, 1 (2008).Google Scholar
Weng, Z., Su, Y., Wang, D.-W., Li, F., Du, J., Cheng, H.-M., Adv. Energy Mater. 1, 917 (2011).CrossRefGoogle Scholar
Tai, Y.-L., Yang, Z.-G., J. Mater. Chem. 21, 5938 (2011).CrossRefGoogle Scholar
Sjostrom, E., Wood Chemistry-Fundamentals and Applications (Academic Press, San Diego, 1993).Google Scholar
Annergren, G., Wågberg, L., in Fundamentals of Papermaking Materials, Transactions of the Fundamental Research Symposium, Baker, C.F., Ed. (Pira International, Cambridge, UK, 1997).Google Scholar
Turbak, A.F., Snyder, F.W., Sandberg, K.R., J. Appl. Polym. Sci. Appl. Polym. Symp. 37, 815 (1983).Google Scholar
Wågberg, L., Winter, L., Ödberg, L., Lindström, T., Colloids Surf. 27, 163 (1987).CrossRefGoogle Scholar
Fall, A.B., Lindström, S.B., Sundman, O., Ödberg, L., Wågberg, L., Langmuir 27, 11332 (2011).CrossRefGoogle Scholar
Saito, T., Kimura, S., Nishiyama, Y., Isogai, A., Biomacromolecules 8, 2485 (2007).CrossRefGoogle Scholar
Saito, T., Nishiyama, Y., Putaux, J.-L., Vignon, M., Isogai, A., Biomacromolecules 7, 1687 (2006).CrossRefGoogle Scholar
Hu, L., Zheng, G., Yao, J., Liu, N., Weil, B., Cui, Y., Eskilsson, M., Karabulut, E., Wågberg, L., Ruan, Z., Fan, S., Bloking, J.T., McGehee, M.D., Energy Environ. Sci. 6, 513 (2013).CrossRefGoogle Scholar
Nystrom, G., Razaq, A., Strømme, M., Nyholm, L., Mihranyan, A., Nano Lett. 9, 3635 (2009).CrossRefGoogle Scholar
Pushparaj, V.L., Shaijumon, M.M., Kumar, A., Murugesan, S., Ci, L., Vajtai, R., Linhardt, R.J., Nalamasu, O., Ajayan, P.M., Proc. Natl. Acad. Sci. U.S.A. 104, 13574 (2007).CrossRefGoogle Scholar
Hu, L., Liu, N., Eskilsson, M., Zheng, G., McDonough, J., Wågberg, L., Cui, Y., Nano Energy 2, 138 (2013).CrossRefGoogle Scholar
Carlsson, D.O., Nystrom, G., Zhou, Q., Berglund, L.A., Nyholm, L., Stromme, M., J. Mater. Chem. 22, 19014 (2012).CrossRefGoogle Scholar
Paakko, M., Vapaavuori, J., Silvennoinen, R., Kosonen, H., Ankerfors, M., Lindstrom, T., Berglund, L.A., Ikkala, O., Soft Matter 4, 2492 (2008).CrossRefGoogle Scholar
Zheng, G., Hu, L., Wu, H., Xie, X., Cui, Y., Energy Environ. Sci. 4, 3368 (2011).CrossRefGoogle Scholar
Nogi, M., Iwamoto, S., Nakagaito, A.N., Yano, H., Adv. Mater. (Weinheim, Ger.) 21, 1595 (2009).CrossRefGoogle Scholar
Nakagaito, A.N., Nogi, M., Yano, H., MRS Bull. 35, 214 (2010).CrossRefGoogle Scholar
Olsson, R.T., Azizi Samir, M.A.S., Salazar Alvarez, G., Belova, L., Strom, V., Berglund, L.A., Ikkala, O., Nogues, J., Gedde, U.W., Nat. Nanotechnol. 5, 584 (2010).CrossRefGoogle Scholar
Sehaqui, H., Liu, A., Zhou, Q., Berglund, L.A., Biomacromolecules 11, 2195 (2010).CrossRefGoogle Scholar
Sehaqui, H., Ezekiel Mushi, N., Morimune, S., Salajkova, M., Nishino, T., Berglund, L.A., ACS Appl. Mater. Interfaces 4, 1043 (2012).CrossRefGoogle Scholar
Huang, J., Zhu, H., Chen, Y., Preston, C., Rohrbach, K., Cumings, J., Hu, L., ACS Nano, doi: 10.1021/nn304407r (2012).Google Scholar
Zhu, H., Parvinian, S., Preston, C., Vaaland, O., Ruan, Z., Hu, L., Hu, L., Nanoscale (2013), doi: 10.1039/C3NR00520H.Google ScholarPubMed