Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-10T16:18:08.041Z Has data issue: false hasContentIssue false

Nanostructured p–n Junctions for Printable Photovoltaics

Published online by Cambridge University Press:  31 January 2011

Get access

Abstract

By controlling the morphology of organic and inorganic semiconductors on a molecular scale, nanoscale p–n junctions can be generated in a bulk composite. Such a composite is typically called a bulk heterojunction composite, which can be considered as one virtual semiconductor combining the electrical and optical properties of the individual components. Solar cells are one attractive application for bulk heterojunction composites. Conjugated polymers or oligomers are the favorite p-type semiconducting class for these composites, while for the n-type semiconductor, inorganic nanoparticles as well as organic molecules have been investigated. Due to the solubility of the individual components, printing techniques are used to fabricate them.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Yu, G., Gao, J., Hummelen, J.C., Wudl, F., and Heeger, A.J., Science 270 (1995) p. 1789; M. Granström, K. Petritsch, A.C. Arias, A. Lux, M.R. Andersson, and R.H. Friend, Nature 395 (1998) p. 257.CrossRefGoogle Scholar
2Shaheen, S.E., Brabec, C.J., Sariciftci, N.S., Padinger, F., Fromherz, T., and Hummelen, J.C., Appl. Phys. Lett. 78 (2001) p. 841.CrossRefGoogle Scholar
3Schilinsky, P., Waldauf, C., and Brabec, C.J., Appl. Phys. Lett. 81 (2002) p. 1.CrossRefGoogle Scholar
4Brabec, C.J., Shaheen, S.E., Winder, C., Sariciftci, N., and Denk, P., Appl. Phys. Lett. 80 (2002) p. 1.CrossRefGoogle Scholar
5Murray, C.B., Norris, D.J., and Bawendi, M.G., J. Am. Chem. Soc. 115 (1993) p. 8706.CrossRefGoogle Scholar
6Huynh, W.U., Dittmer, J.J., and Alivisatos, A.P., Science 295 (2002) p. 2425.CrossRefGoogle Scholar
7O'Regan, B. and Gratzel, M., Nature 353 (1991) p. 737.CrossRefGoogle Scholar
8Murakoshi, K., Kogure, R., Wada, Y., and Yanagida, S., Sol. Energy Mater. Sol. Cells 55 (1998) p. 113.CrossRefGoogle Scholar
9Nogueira, A.F., Durrant, J.R., and Paoli, M.A. De, Adv. Mater. 13 (2001) p. 826.3.0.CO;2-L>CrossRefGoogle Scholar
10O'Regan, B., Lenzmann, F., Muis, R., and Wienke, J., Chem. Mater. 14 (2002) p. 5023.CrossRefGoogle Scholar
11Kruger, J., Plass, R., Gratzel, M., and Matthieu, H.-J., Appl. Phys. Lett. 81 (2002) p. 367.CrossRefGoogle Scholar
12Shaheen, S.E. and Ginley, D.S., “Photovoltaics for the Next Generation,” in Encyclopedia of Nanoscience and Nanotechnology, edited by Schwarz, J.A., Contescu, C.I., and Putyera, K. (Marcel Dekker, New York, 2004) in press.Google Scholar
13Rispens, M.T., Meetsma, A., Rittberger, R., Brabec, C.J., Sariciftci, N.S., and Hummelen, J.C., Chem. Commun. (2003) p. 2116.Google Scholar