Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-27T13:06:18.719Z Has data issue: false hasContentIssue false

Nanotechnology and DNA Delivery

Published online by Cambridge University Press:  31 January 2011

Get access

Abstract

Nonviral DNA delivery systems have great therapeutic and prophylactic potential, but their clinical utility has been limited by three major barriers: (1) inefficient uptake by the cell, (2) insufficient release of DNA within the cell, and (3) ineffective nuclear targeting and transport. Since the size of most cells is in the micrometer regime and the space inside a cell is extremely crowded, ideal DNA delivery systems must be in the nanometer range. Advancements in nanoscale science and nanotechnology have provided us with novel nanoparticles that may overcome all of these barriers, leading to higher-efficiency DNA delivery. This review article will focus on the recent developments in nanoscale DNA delivery systems that consist of chemical dendrimers, DNA dendrimers, nanospheres, nanolayers, nanorods, and nanotubes. The future of DNA delivery systems that interface with nanotechnology is also discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Luo, D. and Saltzman, W.M., Nat. Biotechnol. 18 (2000) p. 33CrossRefGoogle Scholar
2. Data from PubMed database as of July 2005, www.ncbi.nlm.nih.gov/entrez/query.fcgi?db_PubMed (accessed July 2005)Google Scholar
3.Greber, U.F., Willetts, M., Webster, P., and Helenius, A., Cell 75 (1993) p. 477CrossRefGoogle Scholar
4.Wagner, E., Plank, C., Zatloukal, K., Cotton, M., and Birnstiel, M.L., Proc. Natl. Acad. Sci. USA 89 (1992) p. 7934Google Scholar
5.Elliott, G. and O'Hare, P., Cell 88 (1997) p. 223CrossRefGoogle Scholar
6.Leifert, J.A. and Whitton, J.Lindsay, Mol. Ther. 8 (2003) p. 13CrossRefGoogle Scholar
7.Frechet, J.M.J. and Tomalia, E., Dendrimers and Other Dendritic Polymers (John Wiley & Sons, New York, 2001)CrossRefGoogle Scholar
8.Esfand, R. and Tomalia, D.A., Drug Discovery Today 6 (2001) p. 427Google Scholar
9.Tomalia, D.A., Baker, H., Dewald, J., Hall, M., Kallos, G., Martin, S., Roeck, J., Ryder, J., and Smith, P., Polym. J. 17 (1985) p. 117CrossRefGoogle Scholar
10.Benters, R., Niemeyer, C.M., and Wohrle, D., ChemBioChem 2 (2001) p. 686Google Scholar
11.Benters, R., Niemeyer, C.M., Drutschmann, D., Blohm, D., and Wohrle, D., Nucleic Acids Res. 30 (2002) p. E10Google Scholar
12.Tully, D.C., Wilder, K., Frechet, J.M.J., Trimble, A.R., and Quate, C.F., Adv. Mater. 11 (1999) p. 3143.0.CO;2-E>CrossRefGoogle Scholar
13.Service, R.F., Science 267 (1995) p. 458CrossRefGoogle Scholar
14.Frechet, J.M., Proc. Natl. Acad. Sci. USA 99 (2002) p. 4782Google Scholar
15.Haensler, J. and Szoka, F.C. Jr., Bioconjug. Chem. 4 (1993) p. 372Google Scholar
16.Hedden, R.C. and Bauer, B.J., Macromolecules 36 (2003) p. 1829CrossRefGoogle Scholar
17.Bielinska, A.U., Chen, C.L., Johnson, J., and Baker, J.R., Bioconjug. Chem. 10 (1999) p. 843CrossRefGoogle Scholar
18.Kukowska-Latallo, J.F., Bielinska, A.U., Johnson, J., Spindler, R., Tomalia, D.A., and Baker, J.R. Jr., Proc. Natl. Acad. Sci. USA 93 (1996) p. 4897Google Scholar
19.Tang, M.X., Redemann, C.T., and Szoka, F.C. Jr., Bioconjug. Chem. 7 (1996) p. 703Google Scholar
20.Luo, D., Haverstick, K., Belcheva, N., Han, E., and Saltzman, W.M., Macromolecules 35 (2002) p. 3456Google Scholar
21.Kim, T.I., Seo, H.J., Choi, J.S., Jang, H.S., Baek, J.U., Kim, K., and Park, J.S., Biomacromolecules 5 (2004) p. 2487Google Scholar
22.Lee, J.H., Lim, Y.B., Choi, J.S., Lee, Y., Kim, T.I., Kim, H.J., Yoon, J.K., Kim, K., and Park, J.S., Bioconjug. Chem. 14 (2004) p. 1214CrossRefGoogle Scholar
23.Kono, K., Akiyama, H., Takahashi, T., Takagishi, T., and Harada, A., Bioconjug. Chem. 16 (2005) p. 208Google Scholar
24.Thomas, T.P., Patri, A.K., Myc, A., Myaing, M.T., Ye, J.Y., Norris, T.B., and Baker, J.R. Jr., Biomacromolecules 5 (2004) p. 2269CrossRefGoogle Scholar
25.Choi, Y., Thomas, T., Kotlyar, A., Islam, M.T., and Baker, J.R. Jr., Chem. Biol. 12 (2005) p. 35Google Scholar
26.Luo, D. and Li, Y., in Handbook of Nanostructured Biomaterials and Their Applications in Nanobiotechnology, Vol. 1–2 (American Scientific, Los Angeles, 2005)Google Scholar
27.Bouchiat, C., Wang, M.D., Allemand, J., Strick, T., Block, S.M., and Croquette, V., Biophys. J. 76 (1999) p. 409Google Scholar
28.Tinland, B., Pluen, A., Sturm, J., and Weill, G., Macromolecules 30 (1997) p. 5763CrossRefGoogle Scholar
29.Toth, K., Sauermann, V., and Langowski, J., Biochemistry 37 (1998) p. 8173CrossRefGoogle Scholar
30.Roberts, R.J. and Macelis, D., Nucleic Acids Res. 29 (2001) p. 268CrossRefGoogle Scholar
31.Luo, D., Mater. Today 6 (2003) p. 38CrossRefGoogle Scholar
32.Chen, J.H. and Seeman, N.C., Nature 350 (1991) p. 631Google Scholar
33.Li, Y., Tseng, Y.D., Kwon, S.Y., D'Espaux, L., Bunch, J.S., McEuen, P.L., and Luo, D., Nat. Mater. 3 (2004) p. 38CrossRefGoogle Scholar
34.Anderson, C.W., Young, M.E., and Flint, S.J., Virology 172 (1989) p. 506Google Scholar
35.Plank, C., Zauner, W., and Wagner, E., Adv. Drug Deliv. Rev. 34 (1998) p. 21Google Scholar
36.Escriou, V., Carriere, M., Scherman, D., and Wils, P., Adv. Drug Deliv. Rev. 55 (2003) p. 295Google Scholar
37.Kneuer, C., Sameti, M., Bakowsky, U., Schiestel, T., Schirra, H., Schmidt, H., and Lehr, C.M., Bioconjug. Chem. 11 (2000) p. 926Google Scholar
38.Kneuer, C., Sameti, M., Haltner, E.G., Schiestel, T., Schirra, H., Schmidt, H., and Lehr, C.M., Int. J. Pharm. 196 (2000) p. 257CrossRefGoogle Scholar
39.Kumar, M.N.V.R., Sameti, M., Mohapatra, S.S., Kong, X., Lockey, R.F., Bakowsky, U., Lindenblatt, G., Schmidt, H., and Lehr, C.M., J. Nanosci. Nanotechnol. 4 (2004) p. 876Google Scholar
40.Luo, D. and Saltzman, W.M., Nat. Biotechnol. 18 (2000) p. 893Google Scholar
41.Scherer, F., Anton, M., Schillinger, U., Henke, J., Bergemann, C., Kruger, A., Gansbacher, B., and Plank, C., Gene Ther. 9 (2002) p. 102Google Scholar
42.Plank, C., Schillinger, U., Scherer, F., Bergemann, C., Remy, J.S., Krotz, F., Anton, M., Lausier, J., and Rosenecker, J., Biol. Chem. 384 (2003) p. 737Google Scholar
43.Luo, D., Han, E., Belcheva, N., and Saltzman, W.M., J. Control. Release 95 (2004) p. 333CrossRefGoogle Scholar
44.Gemeinhart, R.A., Luo, D., and Saltzman, W.M., Biotechnol. Prog. 21 (2005) p. 532Google Scholar
45.Roy, I., Ohulchanskyy, T.Y., Bharali, D.J., Pudavar, H.E., Mistretta, R.A., Kaur, N., and Prasad, P.N., Proc. Natl. Acad. Sci. USA 102 (2005) p. 279Google Scholar
46.Radu, D.R., Lai, C.Y., Jeftinija, K., Rowe, E.W., Jeftinija, S., and Lin, V.S., J. Am. Chem. Soc. 126 (2004) p. 13216Google Scholar
47.Tyner, K.M., Roberson, M.S., Berghorn, K.A., Li, L., Gilmour, R.F. Jr., Batt, C.A., and Giannelis, E.P., J. Control. Release 100 (2004) p. 399CrossRefGoogle Scholar
48.Salem, A.K., Searson, P.C., and Leong, K.W., Nat. Mater. 2 (2003) p. 668Google Scholar
49.Pantarotto, D., Briand, J.P., Prato, M., and Bianco, Chem. Commun. (Camb.) (2004) p. 16Google Scholar
50.Kam, N.W.Shi, Jessop, T.C., Wender, P.A., and Dai, H., J. Am. Chem. Soc. 126 (2004) p. 6850Google Scholar
51.Lee, K.M., Li, L., and Dai, L., J. Am. Chem. Soc. 127 (2005) p. 4122CrossRefGoogle Scholar
52.Singh, R., Pantarotto, D., McCarthy, D., Chaloin, O., Hoebeke, J., Partidos, C.D., Briand, J.P., Prato, M., Bianco, A., and Kostarelos, K., J. Am. Chem. Soc. 127 (2005) p. 4388Google Scholar
53.Dreher, K.L., Toxicological Sci. 77 (2004) p. 3Google Scholar
54.Halford, B., Chem. Engr. News 82 (2004) p. 14Google Scholar
55.Segura, T. and Shea, L.D., Bioconjug. Chem. 13 (2002) p. 621Google Scholar
56.Segura, T., Volk, M.J., and Shea, L.D., J. Control. Release 93 (2003) p. 69Google Scholar
57.Segura, T., Anderson, B.C., Chung, P.H., Webber, R.E., Shull, K.R., and Shea, L.D., Biomaterials 26 (2005) p. 359CrossRefGoogle Scholar
58.Shen, H., Tan, J., and Saltzman, W.M., Nat. Mater. 3 (2004) p. 569Google Scholar
59.Wang, C., Ge, Q., Ting, D., Nguyen, D., Shen, H.R., Chen, J., Eisen, H.N., Heller, J., Langer, R., and Putnam, D., Nat. Mater. 3 (2004) p. 190Google Scholar
60.Um, S., Kwon, S., Lee, J., and Luo, D., Proc. Natl. Acad. Sci. USA (2005) submittedGoogle Scholar