Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-28T12:29:09.456Z Has data issue: false hasContentIssue false

Network Phases in Block Copolymer Melts

Published online by Cambridge University Press:  31 January 2011

Get access

Abstract

The following article is an edited transcript based on the David Turnbull Lecture given by Frank S. Bates of the University of Minnesota on December 1, 2004, at the Materials Research Society Fall Meeting in Boston. Bates received the award for “pioneering contributions to the fundamental understanding of structure and properties of complex polymeric materials, particularly block copolymers and polymeric vesicles, coupled with outstanding lecturing, writing, teaching, and educational leadership.” This article outlines the research accomplishments of a group of Bates' students that provide fresh insights into the molecular factors governing complex self-assembly in block copolymers. Three triply periodic and multicontinuous network phases were discovered in poly(isoprene-bstyrene-b-ethylene oxide) (ISO) triblock copolymers.Two cubic phases (Q230 and Q214) and an orthorhombic phase (O70) were identified using small-angle x-ray scattering (SAXS), transmission electron microscopy (TEM), birefringence measurements, and dynamic mechanical spectroscopy, along with level-set modeling. These findings establish a concrete strategy for locating potentially valuable network morphologies in ABC triblock copolymer melts.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Bates, F.S. and Fredrickson, G.H., Phys. Today 52 (1999) p. 32.CrossRefGoogle Scholar
2.Matsushita, Y., Suzuki, J., and Seki, M., Physica B: Condens. Matter 248 (1998) p. 238.CrossRefGoogle Scholar
3.Shefelbine, T.A., Vigild, M.E., Matsen, M.W., Hajduk, D.A., Hillmyer, M.A., Cussler, E.L., and Bates, F.S., J. Am. Chem. Soc. 121 (1999) p. 8457.CrossRefGoogle Scholar
4.Bailey, T.S., Hardy, C.M., Epps, T.H., III and Bates, F.S., Macromolecules 35 (2002) p. 7007.CrossRefGoogle Scholar
5.Bailey, T.S., Pham, H.D., and Bates, F.S., Macromolecules 34 (2001) p. 6994.CrossRefGoogle Scholar
6.Epps, T.H., III Cochran, E.W., Hardy, C.M., Bailey, T.S., Waletzko, R.S., and Bates, F.S., Macromolecules 37 (2004) p. 7085.CrossRefGoogle Scholar
7.Epps, T.H., III Cochran, E.W., Bailey, T.S., Waletzko, R.S., Hardy, C.M., and Bates, F.S., Macromolecules 37 (2004) p. 8325.CrossRefGoogle Scholar
8.Wells, A.F., Three-Dimensional Nets and Polyhedra, Wiley Monographs in Crystallography (John Wiley & Sons, New York, 1977).Google Scholar
9.Cochran, E.W. and Bates, F.S., Phys. Rev. Lett. 93 087802(2004).Google Scholar
10.Balsara, N.P., Garetz, B.A., and Dai, H.J., Macromolecules 25 (1992) p. 6072.CrossRefGoogle Scholar
11.Almdal, K., Koppi, K.A., Bates, F.S., and Mortensen, K., Macromolecules 25 (1992) p. 1743.CrossRefGoogle Scholar
12.Seddon, J.M., Biochim. Biophys. Acta 1031 (1990) p. 1.CrossRefGoogle Scholar
13.Finnefrock, A.C., Ulrich, R., Toombes, G.E.S., Gruner, S.M., and Weisner, U., J. Am. Chem. Soc. 125 (2003) p. 13084.CrossRefGoogle Scholar
14.Matsen, M.W. and Bates, F.S., Macromolecules 29 (1996) 7641.Google Scholar
15.Tyler, C.A. and Morse, D.C., Phys. Rev. Lett. 94 208302(2005).Google Scholar
16.Fredrickson, G.H. and Helfand, E., J. Chem. Phys. 87 (1987) p. 697.CrossRefGoogle Scholar
17.Bates, F.S., Rosedale, J.H., Fredrickson, G.H., and Glinka, C., Phys. Rev. Lett. 61 (1988) p. 2229.CrossRefGoogle Scholar
18.Leibler, L., Macromolecules 13 (1980) p. 1602.CrossRefGoogle Scholar
19.Matsen, M. and Schick, M., Phys. Rev. Lett. 72 (1994) p. 2660.CrossRefGoogle Scholar