Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-27T13:02:44.841Z Has data issue: false hasContentIssue false

Opportunities for materials science: From molecules to neural networks

Published online by Cambridge University Press:  12 February 2019

Giovanni Zocchi*
Affiliation:
Department of Physics, University of California, Los Angeles, USA; zocchi@physics.ucla.edu
Get access

Abstract

This article addresses why biomaterials are a growing part of materials science. We consider two areas at two different scales. At the nanometer scale, enzymes are heterogeneous nanoparticles of extraordinary deformability; this property allows us to view biomolecules informed by concepts of materials science and nonlinear physics. A degree of universality in the mechanical behavior of the molecules appears in the ubiquitous softening transitions; some results obtained dynamically by nanorheology, and others obtained in equilibrium experiments through the method of the DNA springs are summarized. These soft molecules represent an opportunity for studies of dissipation at the atomic scale. At the mesoscopic scale, composite functional materials with biological components hold promise for applications such as low power, chemically driven, biodegradable devices. A concrete example, and a program for the future, is the artificial axon. It is a synthetic structure that supports action potentials based on the same physical mechanism as the voltage spikes in nerve cells. A network of such axons, which is yet to come, would constitute an artificial brain. Beyond device applications, the focus here is on the basic science, namely, a constructivist approach to cybernetics, algorithmic mathematics, and the brain.

Type
Bioinspired Far-From-Equilibrium Materials
Copyright
Copyright © Materials Research Society 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Drexler, E., Peterson, C., Pergamit, G., Unbounding the Future: The Nanotechnology Revolution (William Morrow, New York, 1991).Google Scholar
Huber, F., Schnauß, J., Rönicke, S., Rauch, P., Müller, K., Fütterer, C., Käs, J., Adv. Phys. 62, 1 (2013).CrossRefGoogle Scholar
McMahon, B.H., Parak, F.G., Fenimore, P.W., Frauenfelder, H., Proc. Natl. Acad. Sci. U.S.A. 99, 16047 (2002).Google Scholar
Frauenfelder, H., Chen, G., Berendzen, J., Fenimore, P.W., Jansson, H., McMahon, B.H., Stroe, I.R., Swenson, J., Young, R.D., Proc. Natl. Acad. Sci. U.S.A. 106, 5129 (2009).CrossRefGoogle Scholar
Wanga, L., Qina, Y., Zhong, D., Proc. Natl. Acad. Sci. U.S.A. 113, 8424 (2016).Google Scholar
Yang, J., Wang, Y., Wang, L., Zhong, D., J. Am. Coll. Surg. 139, 4399 (2017).Google Scholar
Zocchi, G., Molecular Machines, a Materials Science Approach (Princeton University Press, Princeton, NJ, 2018).Google Scholar
Koshland, D.E. Jr., Proc. Natl. Acad. Sci. U.S.A. 44, 98 (1958).CrossRefGoogle Scholar
Steitz, T.A., Anderson, W.F., Fletterick, R.J., Anderson, C.M., J. Biol. Chem. 252, 4494 (1977).Google Scholar
Bennett, W.S., Steitz, T.A., Proc. Natl. Acad. Sci. U.S.A. 75, 4848 (1978).CrossRefGoogle Scholar
Choi, B., Zocchi, G., Canale, S., Wu, Y., Chan, S., Perry, L.J., Phys. Rev. Lett. 94, 038103 (2005).CrossRefGoogle Scholar
Wang, Y., Zocchi, G., Phys. Rev. Lett. 105, 238104 (2010).CrossRefGoogle Scholar
Hekstra, D.R., White, K.I., Socolich, M.A., Henning, R.W., Šrajer, V., Ranganathan, R., Nature 540, 400 (2016).CrossRefGoogle Scholar
Tseng, C.-Y., Wang, A., Zocchi, G., Europhys. Lett. 91, 18005 (2010).CrossRefGoogle Scholar
Tseng, C.-Y., Zocchi, G., J. Am. Coll. Surg. 135, 11879 (2013).Google Scholar
Wang, Y., Zocchi, G., Europhys. Lett. 96, 18003 (2011).CrossRefGoogle Scholar
Wang, Y., Zocchi, G., PLoS One 6 (12), e28097 (2011).CrossRefGoogle Scholar
Ariyaratne, A., Wu, C., Tseng, C.-Y., Zocchi, G., Phys. Rev. Lett. 113, 198101 (2014).CrossRefGoogle Scholar
Qu, H., Landy, J., Zocchi, G., Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 86, 041915 (2012).CrossRefGoogle Scholar
Qu, H., Zocchi, G., Europhys. Lett. 94, 18003 (2011).CrossRefGoogle Scholar
Dauxois, T., Phys. Today 61, 55 (2008).CrossRefGoogle Scholar
Alavi, Z., Zocchi, G., Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 97, 052402 (2018).CrossRefGoogle Scholar
Rothemund, P.W.K., Nature 440, 297 (2006).CrossRefGoogle Scholar
Shih, W.M., Quispe, J.D., Joyce, G.F., Nature 427, 618 (2004).CrossRefGoogle Scholar
Chen, J., Seeman, N.C., Nature 350, 631 (1991).CrossRefGoogle Scholar
Ariyaratne, A., Zocchi, G., J. Phys. Chem. B 120, 6255 (2016).CrossRefGoogle Scholar
Vasquez, H.G., Zocchi, G., Europhys. Lett. 119, 48003 (2017).CrossRefGoogle Scholar
O’Brien, C.M., Holmes, B., Faucett, S., Zhang, L.G., Tissue. Eng. Part B Rev. 21 (1), 103 (2015).CrossRefGoogle Scholar
Thomas, M., Willerth, S.M., Front. Bioeng. Biotechnol. 5, 69 (2017).CrossRefGoogle Scholar
Espinosa-Hoyos, D., Jagielska, A., Homan, K.A., Du, H., Busbee, T., Anderson, D.G., Fang, N.X., Lewis, J.A., Van Vliet, K.J., Sci. Rep. 8, 478 (2018).CrossRefGoogle Scholar
Braitenberg, V., Vehicles (MIT Press, Cambridge, MA, 1984).Google Scholar
Vasquez, H.G., Zocchi, G., Bioinspir. Biomim. 14, 016017 (2019).CrossRefGoogle Scholar