Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-27T10:36:35.887Z Has data issue: false hasContentIssue false

Optimization of amorphous semiconductors and low-/high-k dielectrics through percolation and topological constraint theory

Published online by Cambridge University Press:  10 January 2017

Michelle M. Paquette
Affiliation:
Department of Physics and Astronomy, University of Missouri–Kansas City, USA; paquettem@umkc.edu
Bradley J. Nordell
Affiliation:
Extreme Light Laboratory, Department of Physics and Astronomy, University of Nebraska–Lincoln; and University of Missouri–Kansas City, USA; bnordell2@unl.edu
Anthony N. Caruso
Affiliation:
Department of Physics and Astronomy, University of Missouri–Kansas City, USA; carusoan@umkc.edu
Masanori Sato
Affiliation:
Department of Electrical and Electronic Engineering, Gifu University, Japan; maka08404649@gmail.com
Hiroyuki Fujiwara
Affiliation:
Department of Electrical, Electronic and Computer Engineering, Gifu University, Japan; fujiwara@gifu-u.ac.jp
Sean W. King
Affiliation:
Logic Technology Development, Intel Corporation, USA; sean.king@intel.com
Get access

Abstract

We explore some aspects of the optimization of amorphous semiconductors as well as low- and high-dielectric-constant (low-/high-k) materials viewed purely from the perspective of percolation and topological constraint theories. We specifically illustrate how percolation, constraint theory, and mean network coordination, 〈r〉, play underlying roles in determining the electrical and mechanical properties of amorphous semiconducting and dielectric materials as well as interfaces that are important for modern micro-/nanoelectronic devices.

Type
Research Article
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Chelikowsky, J.R., Cohen, M.L., J. Appl. Phys. 117, 112812 (2015).Google Scholar
Phillips, J., Thorpe, M., Solid State Commun. 53, 699 (1985).CrossRefGoogle Scholar
Micoulaut, M., Adv. Phys. X 1, 147 (2016).Google Scholar
Park, J.S., Maeng, W.-J., Kim, H.-S., Park, J.-S., Thin Solid Films 520, 1679 (2012).Google Scholar
Nikonov, D.E., Young, I.A., Proc. IEEE 101, 2498 (2013).Google Scholar
King, S.W., Simka, H., Herr, D., Akinaga, H., Garner, M., APL Mater. 1, 040701 (2013).Google Scholar
Solymar, L., Walsh, D., Lectures on the Electrical Properties of Materials, 4th ed. (Oxford University Press, New York, 1988).Google Scholar
Holcomb, D.F., Rehr, J.J., Phys. Rev. 183, 773 (1969).Google Scholar
Zallen, R., The Physics of Amorphous Solids (Wiley, New York, 1983).Google Scholar
Ito, K.M., Haller, E.E., Beeman, J.W., Hansen, W.L., Emes, J., Reichertz, L.A., Kreysa, E., Shutt, T., Cummings, A., Stockwell, W., Sadoulet, B., Muto, J., Farmer, J.W., Ozhogin, V.I., Phys. Rev. Lett. 77, 4058 (1996).Google Scholar
Strukov, D.B., Kohlstedt, H., MRS Bull. 37, 108 (2012).Google Scholar
Drabold, D.A., Li, Y., Cai, B., Zhang, M., Phys. Rev. B Condens. Matter 83, 045201 (2011).Google Scholar
Baranovski, S.D., Ed., Charge Transport in Disordered Solids with Applications in Electronics (Wiley, Hoboken, NJ, 2006).CrossRefGoogle Scholar
Mahan, A.H., Carapella, J., Nelson, B.P., Crandall, R.S., Balberg, I., J. Appl. Phys. 69, 6728 (1991).Google Scholar
Sato, M., King, S., Lanford, W.A., Henry, P., Fujiseki, T., Fujiwara, H., J. Non Cryst. Solids 440, 49 (2016).Google Scholar
Ambrosone, G., Basu, D.K., Coscia, U., Fathallah, M., J. Appl. Phys. 101, 123520 (2008).Google Scholar
Nordell, B.J., Karki, S., Nguyen, T.D., Rulis, P., Caruso, A.N., Purohit, S.S., Li, H., King, S.W., Dutta, D., Gidley, D., Lanford, W.A., Paquette, M.M., J. Appl. Phys. 118, 035703 (2015).Google Scholar
Vyssotsky, V.A., Gordon, S.B., Frisch, H.L., Hammersley, J.M., Phys. Rev. 123, 1566 (1961).Google Scholar
Ziman, J.M., J. Phys. C Solid State Phys. 1, 1532 (1968).Google Scholar
Pomorski, T.A., Bittel, B.C., Cochrane, C.J., Lenahan, P.M., Bielefeld, J., King, S.W., J. Appl. Phys. 114, 074501 (2013).Google Scholar
King, S.W., Bielefeld, J., Xu, G., Lanford, W.A., Matsuda, Y., Dauskardt, R.H., Kim, N., Hondongwa, D., Olasov, L., Daly, B., Stan, G., Liu, M., Dutta, D., Gidley, D., J. Non Cryst. Solids 379, 67 (2013).Google Scholar
Nordell, B.J., Nguyen, T.D., Keck, C.L., Dhungana, S., Caruso, A.N., Lanford, W.A., Gaskins, J.T., Hopkins, P.H., Merrill, D.R., Johnson, D.C., Ross, L.L., Henry, P., King, S.W., Paquette, M.M., Adv. Electron. Mater. 2, 1600073 (2016).Google Scholar
Lucovsky, G., Phillips, J.C., J. Vac. Sci. Technol. B 22, 2087 (2004).Google Scholar
Lucovsky, G., Wu, Y., Niimi, H., Misra, V., Phillips, J.C., Appl. Phys. Lett. 74, 2005 (1999).Google Scholar
Phillips, J.C., J. Vac. Sci. Technol. B 17, 1803 (1999).Google Scholar
Lucovsky, G., Phillips, J.C., J. Non Cryst. Solids 266, 1335 (2000).CrossRefGoogle Scholar
Wilk, G.D., Wallace, R.M., Anthony, J.M., J. Appl. Phys. 89, 5243 (2001).CrossRefGoogle Scholar
Lucovsky, G., Maria, J.P., Phillips, J.C., J. Vac. Sci. Technol. B 22, 2097 (2004).Google Scholar
Grill, A., Gates, S.M., Ryan, T.E., Nguyen, S.V., Priyadarshini, D., Appl. Phys. Rev. 1, 011306 (2014).Google Scholar
Maex, K., Baklanov, M.R., Shamiryan, D., Iacopi, F., Brongersma, S.H., Yanovitskaya, Z.S., J. Appl. Phys. 93, 8793 (2003).Google Scholar
Grill, A., J. Vac. Sci. Technol. B 34, 020801 (2016).Google Scholar
King, S.W., ECS J. Solid State. Sci. Technol. 4, N3029 (2015).CrossRefGoogle Scholar
King, S.W., Jacob, D., Vanleuven, D., Colvin, B., Kelly, J., French, M., Bielefeld, J., Dutta, D., Liu, M., Gidley, D., ECS J. Solid State. Sci. Technol. 1, N115 (2012).Google Scholar
Pomorski, T.A., Bittel, B.C., Lenahan, P.M., Mays, E., Ege, C.. Bielefeld, J., Michalak, D., King, S.W., J. Appl. Phys. 115, 234508 (2014).Google Scholar