Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-27T07:14:14.534Z Has data issue: false hasContentIssue false

Ordered Organic–Inorganic Bulk Heterojunction Photovoltaic Cells

Published online by Cambridge University Press:  31 January 2011

Get access

Abstract

Fabrication of bulk heterojunctions with well-ordered arrays of organic and inorganic semiconductors is a promising route to increasing the efficiency of polymer photovoltaic cells. In such structures, almost all excitons formed are close enough to the organic–inorganic interface to be dissociated by electron transfer, all charge carriers have an uninterrupted pathway to the electrodes, and polymer chains are aligned to increase their charge carrier mobility. Furthermore, ordered structures are interesting because they are relatively easy to model. Studies of ordered cells are likely to lead to better design rules for making efficient photovoltaic cells.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Yu, G., Gao, J., Hummelen, J.C., Wudl, F., and Heeger, A.J., Science 270 (1995) p. 1789.CrossRefGoogle Scholar
2.Halls, J.J.M., Walsh, C.A., Greenham, N.C., Marseglia, E.A., Friend, R.H., Moratti, S.C., and Holmes, A.B., Nature 376 (1995) p. 498.CrossRefGoogle Scholar
3.Greenham, N.C., Peng, X., and Alivisatos, A.P., Phys. Rev. B 54 (1996) p. 17628.CrossRefGoogle Scholar
4.Arango, A.C., Carter, S.A., and Brock, P.J., Appl. Phys. Lett. 74 (1999) p. 1698.CrossRefGoogle Scholar
5.Beek, W.J.E., Wienk, M.M., and Janssen, R.A.J., Adv. Mater. 16 (2004) p. 1009.CrossRefGoogle Scholar
6.Hadziiouannou, G., MRS Bull. 27 (2002) p. 456.CrossRefGoogle Scholar
7.Kim, S., Misner, M.J., Xu, T., Kimura, M., and Russell, T.P., Adv. Mater. 16 (2004) p. 226.CrossRefGoogle Scholar
8.Hamley, I., Nanotechnol. 14 (2003) p. R39.CrossRefGoogle Scholar
9.Coakley, K.M. and McGehee, M.D., Appl. Phys. Lett. 83 (2003) p. 3380.CrossRefGoogle Scholar
10.Ravirajan, P., Haque, S.A., Durrant, J.R., Poplavskyy, D., Bradley, D.D.C., and Nelson, J., J. Appl. Phys. 95 (2004) p. 1473.CrossRefGoogle Scholar
11.Lu, Y., Ganguli, R., Drewien, C.A., Anderson, M.T., Brinker, C.J., Gong, W., Guo, Y., Soyez, H., Dunn, B., Huang, M.H., and Zink, J.I., Nature 389 (1997) p. 364.CrossRefGoogle Scholar
12.Alberius-Henning, P., Frindell, K.L., Hayward, R.C., Kramer, E.J., Stucky, G.D., and Chmelka, B.F., Chem. Mater. 14 (2002) p. 3284.CrossRefGoogle Scholar
13.Crepaldi, E.L., Soler-Illia, G.J.d.A.A., Grosso, D., Cagnol, F., Ribot, R., and Sanchez, C., J. Am. Chem. Soc. 125 (2003) p. 9770.CrossRefGoogle Scholar
14.Coakley, K.M., Lui, Y., McGehee, M.D., Frindell, K.M., and Stucky, G.D., Adv. Funct. Mater. 13 (2003) p. 301.CrossRefGoogle Scholar
15.Xia, Y., Yang, P., Sun, Y., Wu, Y., Mayers, B., Gates, B., Yin, Y., Kim, F., and Yan, H., Adv. Mater. 15 (2003) p. 353.CrossRefGoogle Scholar
16.Greene, L.E., Law, M., Goldberger, J., Kim, F., Johnson, J.C., Zhang, Y., Saykally, R.J., and Yang, P., Angew. Chem. Int. Ed. 42 (2003) p. 3021.CrossRefGoogle Scholar
17.Wu, J., Gross, A.F., and Tolbert, S.H., J. Phys. Chem. B 103 (1999) p. 2374.CrossRefGoogle Scholar
18.Molenkamp, W.C., Watanabe, M., Miyata, H., and Tolbert, S.H., J. Am. Chem. Soc. 126 (2004) p. 4476.CrossRefGoogle Scholar
19.Liu, Y., Coakley, K.M., and McGehee, M.D., Proc. SPIE: Organic Photovoltaics IV 5215 (2004) p. 187.CrossRefGoogle Scholar
20.Gregg, B.A., J. Phys. Chem. B 107 (2003) p. 4688.CrossRefGoogle Scholar
21.Ramsdale, C.M., Barker, J.A., Arias, A.C., Mackenzie, J.D., Friend, R.H., and Greenham, N.C., J. Appl. Phys. 92 (2002) p. 4266.CrossRefGoogle Scholar
22.Coakley, K.M., Liu, Y., McGehee, M.D., Polym. Prepr. 24 (2004) p. 207.Google Scholar
23.Bozano, L., Carter, S.A., Scott, J.C., Malliaras, G.G., and Brock, P.J., Appl. Phys. Lett. 74 (1999) p. 1132.CrossRefGoogle Scholar
24.Bao, Z., Dodabalapur, A., and Lovinger, A., Appl. Phys. Lett. 69 (1996) p. 4108.CrossRefGoogle Scholar
25.Sirringhaus, H., Tessler, N., and Friend, R.H., Science 280 (1998) p. 1741.CrossRefGoogle Scholar
26.Sirringhaus, H., Brown, P.J., Friend, R.H., Nielsen, M.M., Bechgaard, K., Langeveld-Voss, B.M.W., Spiering, A.J.H., Janssen, R.A.J., Meijer, E.W., Herwig, P., and de Leeuw, D.M., Nature 401 (1999) p. 685.CrossRefGoogle Scholar
27.Li, A.P., Muller, F., Birner, A., Nielsch, K., and Gosele, U., J. Appl. Phys. 84 (1998) p. 6023.CrossRefGoogle Scholar
28.McBranch, D., Campbell, I.H., Smith, D.L., and Ferraris, J.P., Appl. Phys. Lett. 66 (1995) p. 1175.CrossRefGoogle Scholar
29.Breeze, A.J., Schlesinger, Z., Carter, S.A., and Brock, P.J., Phys. Rev. B 64 1252051(2001).CrossRefGoogle Scholar
30.Coakley, K.M. and McGehee, M.D., Chem. Mater. 16 (2004) p. 4533.CrossRefGoogle Scholar