Introduction
Origami, the ancient art of paper folding that is now practiced in many cultures, broadly refers to a set of techniques to transform planar sheets into three-dimensional (3D) structures. Variants of traditional origami include kirigami, which involves cutting and folding, and pop-up art, which involves gluing, cutting, and folding. Over the last two decades, this comprehensive set of techniques has inspired the transformation of patterned thin films composed of materials other than paper into 3D functional microelectromechanical (MEMS) and nanoelectromechanical systems (NEMS).
There are a number of advantages in this approach especially relevant to the science and engineering of small functional devices. First, the assembly paradigm is compatible with very well-established inherently planar lithographic techniques such as photo, e-beam, and nanoimprint lithography. Hence, in principle, any two-dimensional (2D) pattern, including those with nanometer-sized, high-fidelity features, can be popped up into a 3D structure. Second, these assembly processes can be applied to a wide range of materials ranging from device-grade single-crystal silicon to cells and biomaterials. Further, folding can be performed in a hands-free and wire-free manner enabling high-throughput and parallel assembly, which is important from a manufacturing perspective. Additionally, a number of adhesive contacts, mechanical latches, and fluidic joints have been developed to self-seal seams after 3D assembly, and consequently, rigid folded structures can be reliably fabricated.
Finally, theoretical advances in mechanics, geometry, origami mathematics, and biomimetics have uncovered design rules for the high-yield self-assembly of complex 3D structures by folding. Consequently, origami assembly approaches have moved from intellectual curiosities into the mainstream of micro- and nanoscale science and engineering. In contrast to previous reviews or broad relevance to this area of origami fabrication and assembly,Reference Syms, Yeatman, Bright and Whitesides1–Reference Cavallo and Lagally9 in this article, we focus on recent advances in functional origami MEMS and NEMS devices.
Folding versus self-folding
Techniques used to achieve macroscale folding by hand, tweezers, or machines can be challenging to implement at small size scales. Nevertheless, manual folding and popping up of microfabricated metals, polysilicon, and printed ink patterns have been pushed to the limit to realize assembly of complex 3D structures such as towers, ceramic birds, supercapacitors, and lightweight materials (see Figure 1a–d).Reference Pister, Judy, Burgett and Fearing10–Reference In, Kumar, Shao-Horn and Barbastathis16 Sequential folding has been achieved by attaching electrically actuated wired hinges such as those composed of polypyrrole (Figure 1e) or shape-memory actuators.Reference Baughman, Shacklette, Elsenbaumer, Plichta, Becht and Lazarev17–Reference Hawkes, An, Benbernou, Tanaka, Kim, Demaine, Rus and Wood19 However, popping up structures by hand or even wiring individual hinges to achieve folding can restrict manufacturing throughput, miniaturization, and off-chip assembly.
Parallel assembly of small 3D devices by origami approaches necessitates manipulation of thin films using forces derived from material properties such as strain mismatch,Reference Prinz, Grutzmacher, Beyer, David, Ketterer and Deckardt20–Reference Bassik, Stern and Gracias23 capillary forces,Reference Green, Syms and Yeatman24–Reference Guo, Li, Ahn, Duoss, Hsia, Lewis and Nuzzo27 magnetic forces,Reference Judy and Muller28,Reference Yi and Liu29 shrinking, or swelling.Reference Gracias7,Reference Hu, Zhang and Li30–Reference Ware, McConney, Wie, Tondiglia and White36 Here, the final 3D configuration typically represents a state of equilibrium derived from the minimization of the total system energy comprising the strain energy (in terms of bending energy and membrane energy incorporated in the various stresses within the thin films) of the structures as well as the work done by the external force (e.g., capillary or magnetic forces). Depending on the form of the driving force, various deformation modes (e.g., global buckling and localized wrinkling) and their combinations could occur, thereby enabling the formation of highly complex 3D geometries (see examples shown in Figure 2a–h). For example, with self-actuating materials capable of programmable shape changes, a wide range of 3D surfaces (e.g., spherical caps and saddles with constant Gaussian curvature, and Enneper’s surfaces, which are minimal surfaces with zero-mean curvature) can be formed,Reference Klein, Efrati and Sharon31,Reference Kim, Hanna, Byun, Santangelo and Hayward33 simply through the use of different patterns of shrinkage and swelling. For thin-sheet configurations, the bending stiffness scales with the cube of thickness, while the tensile stiffness scales linearly with the thickness. Therefore, bending is less costly than compression or tension as thickness decreases, making out-of-plane deformations easy to trigger in thin sheets that are locally growing or shrinking. For 3D structures made of brittle semiconductors or plastic metals, it is also important to control the geometry of the thin sheet as well as the fabrication parameters, such that the strain level in the material can be maintained at a safe level to avoid fracture or delamination.
Another challenge in self-folding, especially of complex geometries, is to solve the inverse problem of uncovering which flat patterns can be programmed to fold up spontaneously into the desired final 3D shape using the forces described previously. In the absence of any wiring or control over local folding pathways, the starting pattern must be optimized to reach a stable and predictable global structure. Significant advances in mechanical modeling, geometric design, and computational origami have provided new insights into this problem. For example, studies on the design of self-folding polyhedra using capillary forces show that compact flat designs (also called nets) yield larger numbers of defect-free polyhedra as compared to more open nets (Figure 2i–j).Reference Pandey, Ewing, Kunas, Nguyen, Gracias and Menon37Appropriate software and theoretical insights from origami mathematics have begun to allow one to solve inverse origami problems and design significantly complex origami.Reference Nagpal38–Reference An and Rus41 Other approaches such as four-dimensional printing have been proposed; these methods utilize both planar and nonplanar printed patterns that can change shape after printing.Reference Raviv, Zhao, McKnelly, Papadopoulou, Kadambi, Shi, Hirsch, Dikovsky, Zyracki, Olguin, Raskar and Tibbits42 By utilizing nonplanar starting fold patterns, more complicated geometries could conceivably be formed using 3D printed patterns, albeit with serial and limited linewidth resolution as compared to that which can be generated with planar lithography.
Functional devices
While origami, kirigami, and pop-up approaches may appear to be art forms, techniques for folding, curving, bending, twisting, and bonding materials have been refined and adapted in engineering to provide true functional value for 3D MEMS and NEMS. In what follows, we review functional micro- and nanoscale devices fabricated using these approaches.
Electrical, electromagnetic, and energy devices
Complex, 3D micro-/nanostructures are ubiquitous in biology, where they provide versatile functionality in mechanical actuation (cytoskeletons), fluid transport (vascular networks), electrical communication (neural circuits), and others. Analogs do not exist even in the most advanced electronics technologies due to an absence of capabilities for 3D micro-/nanofabrication with high-performance electronic materials such as inorganic semiconductors. For example, techniques such as 3D printing or two-photon polymerization do not permit structuring of device-grade silicon. In contrast, capillary or residual stresses can be used to induce bending in thin, released layers from semiconductor wafers in a way that is naturally compatible with modern planar technologies. The result provides access to 3D geometries through either rotations of rigid plates to yield structures such as tilted panels, rectangular cuboids, pyramids, or other hollow polyhedra, or rolling motions of flexible films to form tubes, scrolls, or other cylindrical shapes.
Self-folded structures with device-grade silicon provide new capabilities, such as higher efficiency and small form factor of capillary force-assisted 3D photovoltaic devices (Figure 3a).Reference Guo, Li, Ahn, Duoss, Hsia, Lewis and Nuzzo27 Here, the forces mediated by an evaporating water drop fold very thin (1 μm), single-crystalline Si foils into deterministic shapes. The light-trapping that follows from these shapes improves the device performance by more than 300% compared to planar counterparts, and by more than 600% when combined with a 3× optical concentrator.Reference Guo, Li, Ahn, Duoss, Hsia, Lewis and Nuzzo27 Elsewhere, capillary forces have also been utilized to assemble a variety of off-planar and polyhedral geometries, including high Q microwave inductors,Reference Dahlmann and Yeatman43 optomechanical structures,Reference Syms44 and polyhedra with device-grade silicon,Reference Gracias, Kavthekar, Love, Paul and Whitesides25 3D plasmonic resonators,Reference Cho, Keung, Verellen, Lagae, Moshchalkov, Van Dorpe and Gracias45 Faraday cages,Reference Leong, Zarafshar and Gracias3 microcube antennas, and three-axis devices (Figure 3b–c).Reference Gracias, Cho, Hu, Bonafos, Fujisaki, Dimitrakis and Tokumitsu46
Newer approaches exploit the release of stress in prestrained elastomer substrates to cause 2D sheets of electronic materials or devices to spontaneously transform, without directed intervention, into 3D architectures with complex, targeted geometries (see Figure 3d).Reference Xu, Yan, Jang, Huang, Fu, Kim, Wei, Flavin, McCracken, Wang, Badea, Liu, Xiao, Zhou, Lee, Chung, Cheng, Ren, Banks, Li, Paik, Nuzzo, Huang, Zhang and Rogers47,Reference Zhang, Yan, Nan, Xiao, Liu, Luan, Fu, Wang, Yang, Wang, Ren, Si, Liu, Yang, Li, Wang, Guo, Luo, Wang, Huang and Rogers48 When patterned into appropriate geometries, functional membranes composed of advanced semiconductor materials can be delivered to prestretched elastomer substrates, where they chemically bond at a selected set of points, lithographically defined as spatial modulations in surface chemistry. Releasing the tension in the substrate induces compressive stresses that cause the unbound regions to lift out of the plane, with a trajectory in bending, twisting, and translating dictated by (1) the 2D layout of the original structure, (2) the configuration of bonding points, and (3) the magnitude and orientation of the prestretch. This simple process, which has some similarities to mechanisms in children’s pop-up books, offers remarkable levels of versatility in 3D design, in a way that maintains compatibility with state-of-the-art 2D technologies, including those in electronics, photonics, and MEMS.
Demonstration experiments illustrate the ability to achieve more than 100 different 3D geometries using this technique, ranging from open-filamentary spirals, baskets, and networks, to chiral membranes, fractal plates, and closed-form architectures.Reference Xu, Yan, Jang, Huang, Fu, Kim, Wei, Flavin, McCracken, Wang, Badea, Liu, Xiao, Zhou, Lee, Chung, Cheng, Ren, Banks, Li, Paik, Nuzzo, Huang, Zhang and Rogers47,Reference Zhang, Yan, Nan, Xiao, Liu, Luan, Fu, Wang, Yang, Wang, Ren, Si, Liu, Yang, Li, Wang, Guo, Luo, Wang, Huang and Rogers48 In all cases, finite element analysis algorithms quantitatively capture the shapes, thereby providing indispensable design capabilities for rapidly exploring layout ideas. A unique feature of this mechanically directed approach to 3D assembly is that the structures can remain tethered to an underlying elastomer substrate, such that their 3D geometries can be reversibly adjusted through mechanical strain. Example devices include tunable spiral inductors, in which the 3D geometry, and therefore, the quality factor and resonance frequency, can be tuned, and rotating micromirrors whose tilt angles can be adjusted for beam steering and modulating the transmission.
Another 3D micro- and nanoscale construct of interest to materials used in electrical, electromagnetic, and energy devices is the self-rolled-up microtube (S-RUM). Here, strain induced by lattice, stoichiometric, or thermal mismatch deformation of ultrathin membranes made of semiconductors, dielectrics, metals, and polymers, or hybrid hierarchical composites,Reference Li2,Reference Prinz, Seleznev, Gutakovsky, Chehovskiy, Preobrazhenskii, Putyato and Gavrilova49–Reference Mi and Bianucci52 yield structures with cylindrical symmetry from planar precursors.Reference Huang, Koric, Yu, Hsia and Li53 Demonstrated devices include passive electronic components (capacitors, inductors, antennas, etc.) for radio frequency integrated circuit miniaturization,Reference Bufon, Gonzalez, Thurmer, Grimm, Bauer and Schmidt54–Reference Huang, Li, Gong and Li59 fully integrated field-effect transistors with ultrasmall bending radii,Reference Grimm, Bufon, Deneke, Atkinson, Thurmer, Schaffel, Gorantla, Bachmatiuk and Schmidt60 lasers,Reference Bianucci, Mukherjee, Dastjerdi, Poole and Mi61,Reference Dastjerdi, Djavid and Mi62 vertical ring resonators for 3D photonic integration,Reference Tian, Veerasubramanian, Bianucci, Mukherjee, Mi, Kirk and Plant63–Reference Madani, Kleinert, Stolarek, Zimmermann, Ma and Schmidt66 and batteriesReference Yan, Xi, Si, Deng and Schmidt67–Reference Deng, Ji, Yan, Zhang, Si, Baunack, Oswald, Mei and Schmidt69 (Figure 3e–g). In terms of functionality, S-RUM inductors are 1–2 orders of magnitude smaller and >5× higher in resonant frequency compared to their 2D counterparts (i.e., planar spiral inductors, with operation that is almost independent of substrate conductivity).Reference Huang, Yu, Froeter, Xu, Ferreira and Li55,Reference Froeter, Yu, Huang, Du, Li, Chun, Kim, Hsia, Rogers and Li56 Large-area S-RUM capacitor arrays and helical antennas can also be achieved.Reference Sharma, Bufon, Grimm, Sommer, Wollatz, Schadewald, Thurmer, Siles, Bauer and Schmidt57,Reference Karnaushenko, Karnaushenko, Makarov and Schmidt58 Pairs of inductors have been proposed as integrated microtransformers with near-perfect coupling coefficients.Reference Huang, Li, Gong and Li59,Reference Schmidt, Deneke, Kiravittaya, Songmuang, Heidemeyer, Nakamura, Zapf-Gottwick, Muller and Jin-Phillipp70 In photonics, S-RUMs naturally form ring-resonator cavities. When coupled with III–V-based quantum dots or quantum wells as the gain materials, lasing is possible at ultralow thresholds, under both optical and electrical pumping.Reference Bianucci, Mukherjee, Dastjerdi, Poole and Mi61,Reference Dastjerdi, Djavid and Mi62 S-RUM resonators provide convenient out-of-plane optical coupling schemes for 3D photonic integration, outside of the scope of possibilities with conventional planar microcavities.Reference Tian, Veerasubramanian, Bianucci, Mukherjee, Mi, Kirk and Plant63–Reference Madani, Kleinert, Stolarek, Zimmermann, Ma and Schmidt66 Evanescent fields along with the hollow core geometry make S-RUM resonators inherently suitable for optofluidic sensing and potentially for lab-on-a-chip applications.Reference Bernardi, Kiravittaya, Rastelli, Songmuang, Thurmer, Benyoucef and Schmidt71,Reference Harazim, Quiñones, Kiravittaya, Sanchez and Schmidt72
Lithographically patterned metamaterials
Metamaterials are synthetic and often micro- and nanostructured periodic or patterned structures that provide novel mechanical, electromagnetic, or chemical properties. Currently, a significant challenge is the parallel fabrication of true 3D metamaterials with material versatility and micro-/nanoscale patterns. Origami approaches can be used to create building blocks such as micro- or nanopatterned polyhedra that can be tiled or aggregated to form 3D periodic metamaterials.Reference Randhawa, Gurbani, Keung, Demers, Leahy-Hoppa and Gracias73 Alternatively, micropatterned thin films can be folded up directly into complex materials with periodic 3D patterns, as demonstrated with metals, polymers, and hydrogels (Figure 4a–d).Reference Shenoy and Gracias6,Reference Gracias7,Reference Hawkes, An, Benbernou, Tanaka, Kim, Demaine, Rus and Wood19,Reference Bassik, Stern and Gracias23,Reference Nagpal38,Reference Mahadevan and Rica74,Reference Silverberg, Evans, McLeod, Hayward, Hull, Santangelo and Cohen75 Previously assembled metamaterials include egg-crate-like, lithographically patterned self-folded sheets capable of supporting 128,000× their weight, negative Poisson ratio structures, and origami materials that facilitate mechanically stable lattice defects.Reference Bassik, Stern and Gracias23,Reference Silverberg, Evans, McLeod, Hayward, Hull, Santangelo and Cohen75–Reference Silverberg, Na, Evans, Liu, Hull, Santangelo, Lang, Hayward and Cohen77 These demonstrations illustrate how complex curved and folded materials with hundreds to potentially millions of folds and patterns limited only by the resolution of planar lithography could be mass-produced.
Biomedical devices, robotics, and surgery
A number of curved and folded structures have been assembled that could mimic anatomical structures or confined geometries of relevance to tissue engineering and lab-on-a-chip devices (Figure 4e–f). For example, S-RUMs can guide and accelerate the outgrowth of neurons with exceptional directionality and speed,Reference Schulze, Huang, Krause, Aubyn, Quinones, Schmidt, Mei and Schmidt78,Reference Froeter, Huang, Cangellaris, Huang, Dent, Gillette, Williams and Li79 and control the mechanism of neuronal stem cell migration.Reference Koch, Meyer, Helbig, Harazim, Storch, Sanchez and Schmidt80 Strain engineering has also been used to generate lab-in-a-tube devices,Reference Smith, Xi, Makarov, Mönch, Harazim, Quiñones, Schmidt, Mei, Sanchez and Schmidt81 and curved and folded structures have been used to study the division of single cancer cells, microvascular mimics, drug delivery constructs, bioartificial organs and enable 3D microfluidic tissue scaffolds.Reference Randall, Gultepe and Gracias82–Reference Arayanarakool, Meyer, Helbig, Sanchez and Schmidt87
Out-of-plane bending, folding, twisting, and shape change can also be utilized to enable mechanical actuation of small 3D structures. Techniques such as microfabrication, printed circuit board (PCB) MEMS and lamination have been used to create structures that mimic insects or self-morphing robots (Figure 5a–d).Reference Suzuki, Shimoyama, Miura and Ezura88–Reference Paik, An, Rus and Wood90 At smaller size scales, untethered self-folding microgrippers have been used to biopsy gastrointestinal tissue in live pigs, deliver drugs, and capture single red blood cells (Figure 6a–c).Reference Gultepe, Yamanaka, Laflin, Kadam, Shim, Olaru, Limketkai, Khashab, Kalloo, Gracias and Selaru91–Reference Malachowski, Jamal, Jin, Polat, Morris and Gracias93 S-RUM approaches have been used to create self-propelled structures such as catalytic micromotors that move by bubble propulsion (Figure 6d) and spermbots consisting of a S-RUM is attached to a sperm cell (Figure 6e). These devices have been used to perform a variety of tasks, such as movement of cargo, or even enable mechanized functions, such as drilling holes into cells and tissues.Reference Magdanz, Guix and Schmidt94 Challenges in robotic origami micro- and nanodevices include miniaturization, energy harvesting, speed, reversibility, material versatility, biocompatibility, and programmability.
Summary
Techniques that utilize a range of micropatterning techniques such as photolithography, e-beam lithography, nanoimprint lithography, 3D printing, PCB MEMS, molding, and lamination can be combined with strain engineering to create a range of structures that can curve, fold, twist, or change their shape due to a variety of forces. As is evident from this article, a huge number of diverse structures and functionality have been enabled with a broad range of materials, including device-grade semiconductors, metals, inorganics, polymers, and hydrogels. Future challenges are to further broaden the material versatility, especially with high-quality semiconductors, natural biomaterials, living cells, and 2D layered materials, which will broaden applicability.
There is still much that needs to be understood on the theoretical side in terms of mechanics modeling and programmability; for example, the inclusion of biologically inspired concepts such as hierarchy of folds, orthogonality of interactions, and multistate assembly could enable complex functionality. In addition, the focus in the next decade should include issues such as manufacturability, yield, and reliability, as these processes move from the laboratory and into practical real-world applications.
Acknowledgments
D.H.G. acknowledges support from the National Science Foundation (CMMI 1200241 and DMR-1507749). Y.H. acknowledges support from the National Science Foundation (CMMI-1400169) and from the US National Institutes of Health (NIMAS R01 AR051376 and R01 AR058004). We thank Seung Hyun Oh and ChangKyu Yoon for help with preparation of the figures.