Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-28T05:33:02.729Z Has data issue: false hasContentIssue false

Overcoming fatigue through compression for advanced elastocaloric cooling

Published online by Cambridge University Press:  11 April 2018

Huilong Hou
Affiliation:
Department of Materials Science and Engineering, University of Maryland, USA; hhou@umd.edu
Jun Cui
Affiliation:
Iowa State University, and Ames Laboratory, USA; cuijun@iastate.edu
Suxin Qian
Affiliation:
Department of Refrigeration and Cryogenic Engineering, Xi’an Jiaotong University, China; qiansuxin@mail.xjtu.edu.cn
David Catalini
Affiliation:
University of Maryland, USA; catalini@umd.edu
Yunho Hwang
Affiliation:
Center for Environmental Energy Engineering, University of Maryland, USA; yhhwang@umd.edu
Reinhard Radermacher
Affiliation:
Center for Environmental Energy Engineering, University of Maryland, USA; raderm@umd.edu
Ichiro Takeuchi
Affiliation:
University of Maryland, USA; takeuchi@umd.edu
Get access

Abstract

Elastocaloric materials exhibit extraordinary cooling potential, but the repetition of cyclic mechanical loadings during long-term operation of cooling systems requires the refrigerant material to have long fatigue life. This article reviews the fundamental cause of fatigue from aspects of initiation and propagation of fatigue cracks in shape-memory alloys (SMAs) that are used as elastocaloric materials, and highlights recent advances in using compression to overcome fatigue by curtailing the generation of surfaces associated with crack propagation. Compression is identified as a key means to extend fatigue lifetime in engineering design of elastocaloric cooling drive mechanisms. We summarize the state-of-the-art performance of different SMAs as elastocaloric materials and discuss the influence of low cyclic strains and high resistance to transformation. We present integration of compression-based material assemblies into a cooling system prototype and optimization of the system efficiency using work recovery and related measures.

Type
Caloric Effects in Ferroic Materials
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Takeuchi, I., Sandeman, K., Phys. Today 68, 48 (2015).CrossRefGoogle Scholar
Fahler, S., Rossler, U.K., Kastner, O., Eckert, J., Eggeler, G., Emmerich, H., Entel, P., Muller, S., Quandt, E., Albe, K., Adv. Eng. Mater. 14, 10 (2012).CrossRefGoogle Scholar
Moya, X., Kar-Narayan, S., Mathur, N.D., Nat. Mater. 13, 439 (2014).CrossRefGoogle Scholar
Mañosa, L., Planes, A., Adv. Mater. 29, 1603607 (2016).CrossRefGoogle Scholar
Cui, J., Wu, Y., Muehlbauer, J., Hwang, Y., Radermacher, R., Fackler, S., Wuttig, M., Takeuchi, I., Appl. Phys. Lett. 101, 073904 (2012).CrossRefGoogle Scholar
Bechtold, C., Chluba, C., De Miranda, R.L., Quandt, E., Appl. Phys. Lett. 101, 091903 (2012).CrossRefGoogle Scholar
Hou, H., Simsek, E., Stasak, D., Hasan, N.A., Qian, S., Ott, R., Cui, J., Takeuchi, I., J. Phys. D Appl. Phys. 50, 404001 (2017).CrossRefGoogle Scholar
Tušek, J., Engelbrecht, K., Eriksen, D., Dall’Olio, S., Tušek, J., Pryds, N., Nat. Energy 1, 16134 (2016).CrossRefGoogle Scholar
Qian, S., Alabdulkarem, A., Ling, J.Z., Muehlbauer, J., Hwang, Y., Radermacher, R., Takeuchi, I., Int. J. Refrig. 57, 62 (2015).CrossRefGoogle Scholar
Ossmer, H., Wendler, F., Gueltig, M., Lambrecht, F., Miyazaki, S., Kohl, M., Smart Mater. Struct. 25, 085037 (2016).CrossRefGoogle Scholar
Otsuka, K., Ren, X., Prog. Mater. Sci. 50, 511 (2005).CrossRefGoogle Scholar
Meyers, M.A., Chawla, K.K., Mechanical Behavior of Materials (Cambridge University Press, Cambridge, UK, 2009).Google Scholar
Ashby, M., Shercliff, H., Cebon, D., Materials: Engineering, Science, Processing and Design (Butterworth-Heinemann, Oxford, UK, 2007).Google Scholar
Zhang, P., Lindemann, J., Scr. Mater. 52, 485 (2005).CrossRefGoogle Scholar
Luong, H., Hill, M.R., Mater. Sci. Eng. A 527, 699 (2010).CrossRefGoogle Scholar
Gall, K., Sehitoglu, H., Int. J. Plast. 15, 69 (1999).CrossRefGoogle Scholar
Gall, K., Sehitoglu, H., Chumlyakov, Y.I., Kireeva, I.V., Acta Mater. 47, 1203 (1999).CrossRefGoogle Scholar
Buchheit, T.E., Wert, J.A., Metall. Mater. Trans. A 25, 2383 (1994).CrossRefGoogle Scholar
Gall, K., Sehitoglu, H., Anderson, R., Karaman, I., Chumlyakov, Y.I., Kireeva, I.V., Mater. Sci. Eng. A 317, 85 (2001).CrossRefGoogle Scholar
Liu, Y., Xie, Z., Van Humbeeck, J., Delaey, L., Acta Mater. 46, 4325 (1998).CrossRefGoogle Scholar
Sehitoglu, H., Wu, Y., Ertekin, E., Scr. Mater. (2017), doi:10.1016/j.scriptamat.2017.05.017.Google Scholar
Qian, S., Geng, Y., Wang, Y., Muehlbauer, J., Ling, J., Hwang, Y., Radermacher, R., Takeuchi, I., Sci. Technol. Built Environ. 22, 500 (2016).CrossRefGoogle Scholar
Qian, S., “Development of Thermoelastic Cooling Systems,” PhD dissertation, University of Maryland (2015).Google Scholar
Qian, S., Ling, J., Muehlbauer, J., Hwang, Y., Radermacher, R., Int. J. Refrig. 55, 102 (2015).CrossRefGoogle Scholar
Pelton, A.R., J. Mater. Eng. Perform. 20, 613 (2011).CrossRefGoogle Scholar
Wu, Y., Ertekin, E., Sehitoglu, H., Acta Mater. 135, 158 (2017).CrossRefGoogle Scholar
Xiao, F., Liang, X., Jin, X., Nie, Z., Kakeshita, T., Fukuda, T., Acta Mater. 118, 88 (2016).CrossRefGoogle Scholar
Xu, Y., Lu, B.F., Sun, W., Yan, A., Liu, J., Appl. Phys. Lett. 106, 201903 (2015).CrossRefGoogle Scholar
Xiao, F., Jin, M., Liu, J., Jin, X., Acta Mater. 96, 292 (2015).CrossRefGoogle Scholar
Lu, B., Zhang, P., Xu, Y., Sun, W., Liu, J., Mater. Lett. 148, 110 (2015).CrossRefGoogle Scholar
Yang, Z., Cong, D., Sun, X., Nie, Z., Wang, Y., Acta Mater. 127, 33 (2017).CrossRefGoogle Scholar
Robertson, S.W., Pelton, A.R., Ritchie, R.O., Int. Mater. Rev. 57, 1 (2012).CrossRefGoogle Scholar