Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-28T03:34:53.537Z Has data issue: false hasContentIssue false

Plasmonic tweezers—The strength of surface plasmons

Published online by Cambridge University Press:  15 August 2012

Romain Quidant*
Affiliation:
ICFO–Institut de Ciències Fotòniques, and ICREA–Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain; romain.quidant@icfo.es
Get access

Abstract

Enhanced and confined optical fields near metallic nanostructures, supporting surface plasmon (SP) resonances, make it possible to enhance the interaction of light with tiny amounts of matter, down to the molecular level. Such capability has been extensively exploited in the framework of optical spectroscopy, nonlinear optics, imaging and integrated optics, among others. Here we discuss the use of plasmonics for optical trapping. Plasmon-based trapping addresses key limitations of conventional optical tweezers formed at the focus of a diffraction-limited laser beam. Beyond permitting trapping of smaller objects, down to the true nanometer scale, they enable parallel trapping from a single beam and can be easily integrated on a chip. SP-based trapping opens new perspectives in a wide range of fields from biology to quantum optics.

Type
Research Article
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Ashkin, A., Dziedzic, J.M., Bjorkholm, J.E., Chu, S., Opt. Lett. 11, 288 (1986).CrossRefGoogle Scholar
2.Paterson, L., MacDonald, M.P., Arlt, J., Sibbett, W., Bryant, P.E., Dholakia, K., Science 292, 912 (2001).CrossRefGoogle Scholar
3.MacDonald, M.P., Spalding, G.C., Dholakia, K., Nature 426, 421 (2003).CrossRefGoogle Scholar
4.Ashkin, A., Dziedzic, J.M., Yamane, T., Nature 330, 769 (1987).CrossRefGoogle Scholar
5.Bustamante, C., Bryant, Z., Smith, S.B., Nature 421, 424 (2003).CrossRefGoogle Scholar
6.Girard, C., Dereux, A., Martin, O.J.F., Phys. Rev. B 49, 13872 (1994).CrossRefGoogle Scholar
7.Novotny, L., Bian, R.X., Xie, X.S., Phys. Rev. Lett. 79, 645 (1997).CrossRefGoogle Scholar
8.Martin, O.J.F., Girard, C., Appl. Phys. Lett. 70, 705 (1997).CrossRefGoogle Scholar
9.Okamoto, K., Kawata, S., Phys. Rev. Lett. 83, 4534 (1999).CrossRefGoogle Scholar
10.Song, Y.G., Han, B.M., Chang, S., Opt. Commun. 198, 7 (2001).CrossRefGoogle Scholar
11.Volpe, G., Quidant, R., Badenes, G., Petrov, D., Phys. Rev. Lett. 96, 238101 (2006).CrossRefGoogle Scholar
12.Garcés-Chávez, V., Quidant, R., Reece, P.J., Badenes, G., Torner, L., Dholakia, K., Phys. Rev. B 73, 085417 (2006).CrossRefGoogle Scholar
13.Wang, K., Schronbrun, E., Crozier, K.B., Nano Lett. 9, 2623 (2009).CrossRefGoogle Scholar
14.Righini, M., Zelenina, A.S., Girard, C., Quidant, R., Nat. Phys. 3, 477 (2007).CrossRefGoogle Scholar
15.Huang, L., Maerkl, S.J., Martin, O.J.F., Opt. Express 17, 6018 (2009).CrossRefGoogle Scholar
16.Wong, H.M.K., Righini, M., Gates, J.C., Smith, P.G.R., Pruneri, V., Quidant, R., Appl. Phys. Lett. 99, 061107 (2011).CrossRefGoogle Scholar
17.Donner, J.S., Baffou, G., McCloskey, D., Quidant, R., ACS Nano 5, 5457 (2011).CrossRefGoogle Scholar
18.Zhu, W., Banaee, M.G., Wang, D., Chu, Y., Crozier, K.B., Small 7, 1761 (2011).CrossRefGoogle ScholarPubMed
19.Aćimović, S.S., Kreuzer, M.P., González, M.U., Quidant, R., ACS Nano 3, 1231 (2009).CrossRefGoogle Scholar
20.Harutyunyan, H., Volpe, G., Quidant, R., Novotny, L., Phys. Rev. Lett. 108, 217403 (2012).CrossRefGoogle Scholar
21.Xu, H., Käll, M., Phys. Rev. Lett. 89, 246802 (2002).CrossRefGoogle Scholar
22.Grigorenko, A.N., Roberts, N.W., Dickinson, M.R., Zhang, Y., Nat. Photonics 2, 365 (2008).CrossRefGoogle Scholar
23.Righini, M., Ghenuche, P., Cherukulappurath, S., Myroshnychenko, V., García de Abajo, F.J., Quidant, R., Nano Lett. 9, 3387 (2009).CrossRefGoogle Scholar
24.Tsuboi, Y., Shoji, T., Kitamura, N., Takase, M., Murakoshi, K., Mizumoto, Y., Ishihara, H., J. Phys. Chem. Lett. 1, 2327 (2010).CrossRefGoogle Scholar
25.Zhang, W., Huang, L., Santschi, C., Martin, O.J.F., Nano Lett. 10, 1006 (2010).CrossRefGoogle Scholar
26.Ashkin, A., Dziedzic, J.M., Appl. Phys. Lett. 30, 202 (1977).CrossRefGoogle Scholar
27.Simmons, R.M., Finer, J.T., Chu, S., Spudich, J.A., Biophys. J. 70, 1813 (1996).CrossRefGoogle Scholar
28.Wallin, A.E., Ojala, H., Hæggström, E., Tuma, R., Appl. Phys. Lett. 92, 224104 (2008).CrossRefGoogle Scholar
29.Willets, K.A., Van Duyne, R.P., Physical Chemistry 58, 267 (2007).CrossRefGoogle Scholar
30.Yang, A.H.J., Moore, S.D., Schmidt, B.S., Klug, M., Lipson, M., Erickson, D., Nature 457, 71 (2009).CrossRefGoogle Scholar
31.Sainidou, R., García de Abajo, F.J., Phys. Rev. Lett. 101, 136802 (2008).CrossRefGoogle Scholar
32.Juan, M.L., Gordon, R., Pang, Y., Eftekhari, F., Quidant, R., Nat. Phys. 5, 915 (2009).CrossRefGoogle Scholar
33.Chen, C., Juan, M.L., Li, Y., Maes, G., Borghs, G., van Dorpe, P., Quidant, R., Nano Lett. 12, 125 (2012).CrossRefGoogle Scholar
34.Pang, Y., Gordon, R., Nano Lett. 11, 3763 (2011).CrossRefGoogle Scholar
35.Pang, Y., Gordon, R., Nano Lett. 12, 402 (2012).CrossRefGoogle Scholar
36.Verellen, N., Sonnefraud, Y., Sobhani, H., Hao, F., Moshchalkov, V.V., Van Dorpe, P., Nordlander, P., Maier, S.A., Nano Lett. 9, 1663 (2009).CrossRefGoogle Scholar
37.Liu, N., Weiss, T., Mesch, M., Langguth, L., Eigenthaler, U., Hirscher, M., Sonnichsen, C., Giessen, H., Nano Lett. 10, 1103 (2010).CrossRefGoogle Scholar
38.Evlyukhin, A.B., Bozhevolnyi, S.I., Pors, A., Nielse, M.G., Radko, I.P., Willatzen, M., Albrektsen, O., Nano Lett. 10, 4571 (2010).CrossRefGoogle Scholar
39.Balykin, V.I., Letokhov, V.S., Klimov, V.V., Opt. Photonics News 16, 44 (2005).CrossRefGoogle Scholar
40.Klimov, V.V., Sekatskii, S.K., Dietler, G., Opt. Commun. 259, 883 (2006).CrossRefGoogle Scholar
41.Chang, D.E., Thompson, J.D., Park, H., Vuletic, V., Zibrov, A.S., Zoller, P., Lukin, M.D., Phys. Rev. Lett. 103, 123004 (2009).CrossRefGoogle Scholar
42.Stehle, C., Bender, H., Zimmermann, C., Kern, D., Fleischer, M., Slama, S., Nat. Photonics 5, 494 (2011).CrossRefGoogle Scholar
43.Juan, M.L., Righini, M., Quidant, R., Nature Photon. 5, 349 (2011).CrossRefGoogle Scholar