Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-13T03:00:22.830Z Has data issue: false hasContentIssue false

Polymer nanocomposites with high energy storage densities

Published online by Cambridge University Press:  04 September 2015

Yang Shen
Affiliation:
School of Materials Science and Engineering, Tsinghua University, China; shyang_mse@tsinghua.edu.cn
Yuanhua Lin
Affiliation:
State Key Lab of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, China; linyh@tsinghua.edu.cn
Q.M. Zhang
Affiliation:
The Pennsylvania State University, USA; qxz1@psu.edu
Get access

Abstract

Dielectric capacitors have been the major enabler for many applications in advanced electronic and electrical power systems because of their capability for ultrafast charging/discharging and ultrahigh power density. The low energy densities of polymer dielectrics used in these capacitors have not been able to meet the ever-increasing demands for compact, reliable, and efficient electrical power systems. Polymer nanocomposites, in which high-dielectric-constant (k) nanofillers are incorporated in the polymer matrix, have been actively pursued. In this article, we begin with two theoretical considerations for concomitantly increasing the dielectric permittivity and breakdown strength of nanocomposites: critical interfacial polarization and local electric-field distribution. In the framework of these considerations, we review recent progress toward polymer nanocomposites with high energy densities based on two approaches: core–shell-structured polymer nanocomposites and dielectric anisotropy. In addition, the potential for the enhanced elastic properties of nanocomposites to improve the dielectric strengths of capacitor films is also discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Sarjeant, W.J., Zirnheld, J., MacDougall, F.W., Bowers, J.S., Clark, N., Clelland, I.W., Price, R.A., Hudis, M., Kohlberg, I., McDuff, G., McNab, I., Parler, S.G. Jr., Prymak, J., in Handbook of Low and High Dielectric Constant Materials and Their Applications, Nalwa, H.S., Ed. (Academic Press, San Diego, 1999), vol. 2, pp. 424492.Google Scholar
Wang, Q., Zhu, L., J. Polym. Sci. B Polym. Phys. 49, 1421 (2011).CrossRefGoogle Scholar
Dang, Z.M., Yuan, J.K., Yao, S.H., Liao, R.J., Adv. Mater. 25, 6335 (2013).CrossRefGoogle Scholar
Reed, C.W., Cichanowski, S.W., IEEE Trans. Dielectr. Electr. Insul. 1, 904 (1994).Google Scholar
Picci, M., Rabuffi, G., IEEE Trans. Plasma Sci. 30, 1939 (2002).Google Scholar
Zhu, L., Wang, Q., Macromolecules 45, 2937 (2012).Google Scholar
Guan, F.X., Yang, L.Y., Wang, J., Guan, B., Han, K., Wang, Q., Zhu, L., Adv. Funct. Mater. 21, 3176 (2011).CrossRefGoogle Scholar
Wu, S., Li, W.P., Lin, M.R., Burlingame, Q., Chen, Q., Payzant, A., Xiao, K., Zhang, Q.M., Adv. Mater. 25, 1734 (2013).CrossRefGoogle Scholar
Li, W.P., Jiang, L., Zhang, X., Shen, Y., Nan, C.-W., J. Mater. Chem. A 2, 15803 (2014).CrossRefGoogle Scholar
Chen, Q., Shen, Y., Zhang, S.H., Zhang, Q.M., Annu. Rev. Mater. Res. 45, 433 (2015).Google Scholar
Nan, C.W., Prog. Mater. Sci. 37, 1 (1993).CrossRefGoogle Scholar
Li, J.Y., Phys. Rev. Lett. 90, 217601 (2003).CrossRefGoogle Scholar
Bune, A.V., Fridkin, V.M., Ducharme, S., Blinov, L.M., Palto, S.P., Sorokin, A.V., Yudin, S.G., Zlatkin, A., Nature 391, 874 (1998).Google Scholar
Peruani, F., Solovey, G., Irurzun, I.M., Mola, E.E., Marzocca, A., Vicente, J.L., Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 67, 066121 (2003).CrossRefGoogle Scholar
Calame, J.P., J. Appl. Phys. 94, 5945 (2003).Google Scholar
Li, J.Y., Huang, C., Zhang, Q.M., Appl. Phys. Lett. 84, 3124 (2004).Google Scholar
Lewis, T.J., J. Phys. D Appl. Phys. 38, 202 (2005).CrossRefGoogle Scholar
Tanaka, T., Kozako, M., Fuse, N., Ohki, Y., IEEE Trans. Dielectr. Electr. Insul. 12, 669 (2005).Google Scholar
Lewis, T.J., IEEE Trans. Dielectr. Electr. Insul. 11, 739 (2004).Google Scholar
O’Konski, C.T., J. Phys. Chem. 64, 605 (1960).CrossRefGoogle Scholar
Chew, C.W., Sen, P.N., J. Chem. Phys. 77, 4683 (1982).Google Scholar
Lopez-Pamies, O., Goudarzi, T., Meddeb, A.B., Ounaies, Z., Appl. Phys. Lett. 104, 242904 (2014).CrossRefGoogle Scholar
Li, J.Y., Ducharme, S., Appl. Phys. Lett. 90, 132901 (2007).CrossRefGoogle Scholar
Kim, P., Doss, M., Tillotson, J.P., Hotchkiss, P.J., Pan, M.J., Marder, S.R., Li, J.Y., Calame, J.P., Perry, J.W., ACS Nano 3, 2581 (2009).Google Scholar
Hori, M., Nemat-Nasser, S., Mech. Mater. 14, 189 (1993).Google Scholar
Dunn, M.L., Ledbetter, H., J. Appl. Mech. 62, 1023 (1995).Google Scholar
Li, J.Y., Int. J. Solids Struct. 37, 5579 (2000).Google Scholar
Rao, Y., Wong, C.P., J. Appl. Polym. Sci. 92, 2228 (2004).CrossRefGoogle Scholar
Yuan, J.-K, Yao, S.-H., Dang, Z.-M., Sylvestre, A., Genestoux, M., Bai, J., J. Phys. Chem. C 115, 5515 (2011).Google Scholar
Siddabattuni, S., Schuman, T.P., Dogan, F., Mater. Sci. Eng. B 176, 1422 (2011).CrossRefGoogle Scholar
Kim, P., Jones, S.C., Hotchkiss, P.J., Haddock, J.N., Kippelen, B., Marder, S.R., Perry, J.W., Adv. Mater. 19, 1001 (2007).Google Scholar
Zhou, T., Zha, J.W., Cui, R.Y., Fan, B.H., Yuan, J.K., Dang, Z.M., ACS Appl. Mater. Interfaces 3, 2184 (2011).CrossRefGoogle Scholar
Liu, S.H., Zhai, J.W., Wang, J.W., Xue, S.X., Zhang, W.Q., ACS Appl. Mater. Interfaces 6, 1533 (2014).Google Scholar
Lee, H.S., Dellatore, S.M., Miller, W.M., Messersmith, P.B., Science 318, 426 (2007).CrossRefGoogle Scholar
Song, Y., Shen, Y., Liu, H.Y., Lin, Y.H., Li, M., Nan, C.-W., J. Mater. Chem. 22, 16491 (2012).Google Scholar
Song, Y., Shen, Y., Liu, H.Y., Lin, Y.H., Li, M., Nan, C.-W., J. Mater. Chem. 22, 8063 (2012).CrossRefGoogle Scholar
Song, Y., Shen, Y., Hu, P.H., Lin, Y.H., Li, M., Nan, C.-W., Appl. Phys. Lett. 101, 152904 (2012).CrossRefGoogle Scholar
Xie, L., Huang, X.Y., Wu, C., Jiang, P.K., J. Mater. Chem. 21, 5897 (2011).CrossRefGoogle Scholar
Yang, K., Huang, X.Y., Huang, Y.H., Xie, L., Jiang, P.K., Chem. Mater. 25, 2327 (2013).Google Scholar
Jung, H.M., Kang, J.H., Yang, S.Y., Won, J.C., Kim, Y.S., Chem. Mater. 22, 450 (2010).Google Scholar
Siddabattuni, S., Schuman, T.P., Dogan, F., ACS Appl. Mater. Interfaces 5, 1917 (2013).Google Scholar
Li, Z., Fredin, L.A., Tewari, P., DiBenedetto, S.A., Lanagan, M.T., Ratner, M.A., Marks, T.J., Chem. Mater. 22, 5154 (2010).Google Scholar
Guo, N., DiBenedetto, S.A., Tewari, P., Lanagan, M.T., Ratner, M.A., Marks, T.J., Chem. Mater. 22, 1567 (2010).Google Scholar
Fredin, L.A., Li, Z., Ratner, M.A., Lanagan, M.T., Marks, T.J., Adv. Funct. Mater. 23, 2650 (2013).Google Scholar
Fredin, L.A., Li, Z., Ratner, M.A., Lanagan, M.T., Marks, T.J., Adv. Mater. 24, 5946 (2012).CrossRefGoogle Scholar
Li, J.J., Seok, S.I., Chu, B., Dogan, F., Zhang, Q., Wang, Q., Adv. Mater. 21, 217 (2009).Google Scholar
Tomer, V., Randal, C.A., Polizos, G., Kostelnick, J., Manias, E., J. Appl. Phys. 103, 034115 (2008).Google Scholar
Wang, Y.U., Tan, D.Q., J. Appl. Phys. 110, 104102 (2011).Google Scholar
Wang, Y.U., Tan, D.Q., Krahn, J., J. Appl. Phys. 110, 044103 (2011).Google Scholar
Tomer, V., Randall, C.A., J. Appl. Phys. 104, 074106 (2008).Google Scholar
Tang, H.X., Lin, Y.R., Sodano, H.A., Adv. Energy Mater. 3, 451 (2012).CrossRefGoogle Scholar
Hu, P.H., Liu, H.Y., Shen, Y., Guan, Y.H., Song, Y., Lin, Y.H., Nan, C.-W., J. Mater. Chem. A 1, 1688 (2013).CrossRefGoogle Scholar
Tomer, V., Polizos, G., Randall, C.A., Manias, E., J. Appl. Phys. 109, 074113 (2011).Google Scholar
Fillery, S.P., Koerner, H., Drummy, L., Dunkerley, E., Durstock, M.F., Schmidt, D.F., Vaia, R.A., ACS Appl. Mater. Interfaces 4, 1388 (2012).Google Scholar
Li, W., Meng, Q., Zheng, Y., Zhang, Z., Xia, W., Xu, Z., Appl. Phys. Lett. 96, 192905 (2010).Google Scholar
Tang, H.X., Sodano, H.A., Nano Lett. 13, 1373 (2013).CrossRefGoogle Scholar
Tomer, V., Manias, E., Randall, C.A., J. Appl. Phys. 110, 044107 (2011).CrossRefGoogle Scholar
Polizos, G., Tomer, V., Manias, E., Randall, C.A., J. Appl. Phys. 108, 074117 (2010).Google Scholar
Li, Q., Han, K., Gadinski, M.R., Zhang, G.Z., Wang, Q., Adv. Mater. 26, 6244 (2014).Google Scholar
Hu, P.H., Shen, Y., Guan, Y.H., Zhang, X.H., Lin, Y.H., Adv. Funct. Mater. 24, 3172 (2014).CrossRefGoogle Scholar
Hu, P.H., Wang, J.J., Shen, Y., Guan, Y.H., Lin, Y.H., Nan, C.-W., J. Mater. Chem. A 1, 12321 (2013).Google Scholar
Zhang, X., Shen, Y., Zhang, Q.H., Gu, L., Hu, Y.H., Du, J.W., Lin, Y.H., Nan, C.-W., Adv. Mater. 27, 819 (2015).Google Scholar
Zhang, X., Chen, W.W., Wang, J.J., Shen, Y., Gu, L., Lin, Y.H., Nan, C.-W., Nanoscale 6, 6701 (2014).Google Scholar
O’Dwyer, J.J., The Theory of Dielectric Breakdown of Solids (Clarendon Press, Oxford, UK, 1964).Google Scholar
Ieda, M., IEEE Trans. Electr. Insul. EI-15, 206 (1980).Google Scholar
Dissado, L.A., Fothergill, J.C., Electrical Degradation and Breakdown in Polymers (Peter Peregrinus, London, 1992).Google Scholar
Zhou, X., Zhao, X., Suo, Z., Zou, C., Runt, J., Liu, S., Zhang, S., Zhang, Q.M., Appl. Phys. Lett. 94, 162901 (2009).Google Scholar
Stark, K.H., Garton, C.G., Nature 176, 1225 (1955).Google Scholar
Fothergill, J.C., IEEE Trans. Electr. Insul. 26, 1124 (1991).Google Scholar
Zebouchi, N., Malec, D., J. Appl. Phys. 83, 6190 (1998).Google Scholar
Nash, J.L., Polym. Eng. Sci. 28, 862 (1988).Google Scholar
Zhao, X.H., Hong, W., Suo, Z.G., Phys. Rev. B Condens. Matter 76, 134113 (2007).Google Scholar
Jordan, J., Jacob, K.I., Tannenbaum, R., Aharaf, M.A., Jasiuk, I., Mater. Sci. Eng. A 393, 1 (2005).Google Scholar
Shah, D., Maiti, P., Guun, E., Schmidt, D.F., Jiang, D.D., Batt, C.A., Giannelis, E.P., Adv. Mater. 16, 1173 (2004).Google Scholar