Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-29T11:43:50.507Z Has data issue: false hasContentIssue false

Protic ionic liquids: Fuel cell applications

Published online by Cambridge University Press:  15 July 2013

Tomohiro Yasuda
Affiliation:
Cooperative Research and Development Center, Yokohama National University, Japan; yasuda@ynu.ac.jp
Masayoshi Watanabe
Affiliation:
Department of Chemistry & Biotechnology, Yokohama National University, Japan; mwatanab@ynu.ac.jp
Get access

Abstract

We have investigated protic ionic liquids (PILs) as proton conductors for non-humidified intermediate-temperature fuel cells. PILs exhibit proton conductivity and activity in fuel cell electrode reactions, as seen in acidic aqueous solutions and acidic polymer membranes. The wide molecular designability of PILs enabled the finding of a promising candidate, diethylmethylammonium trifluoromethanesulfonate ([dema][ TfO]), which exhibits favorable bulk properties and electrochemical activity. Solid thin films containing [dema][ TfO] were fabricated using sulfonated polyimide as a matrix polymer. By using the composite membrane, non-humidifying fuel cell operation at 120°C succeeded. The fuel cell performance can be further improved by the optimization of the catalyst layer and with further research on PILs.

Type
Research Article
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Strasser, K., J. Power Sources 37, 209 (1992).CrossRefGoogle Scholar
Alayoglu, S., Nilekar, A.U., Mavrikakis, M., Eichhorn, B., Nat. Mater. 7, 333 (2008).CrossRefGoogle Scholar
Ikeda, T., Boero, M., Huang, S.F., Terakura, K., Oshima, M., Ozaki, J., J. Phys. Chem. C 112, 14706 (2008).CrossRefGoogle Scholar
Ishihara, A., Ohgi, Y., Matsuzawa, K., Mitsushima, S., Ota, K., Electrochim. Acta 55, 8005 (2010).CrossRefGoogle Scholar
Li, Q.F., He, R.H., Jensen, J.O., Bjerrum, N.J., Chem. Mater. 15, 4896 (2003).CrossRefGoogle Scholar
Mauritz, K.A., Moore, R.B., Chem. Rev. 104, 4535 (2004).CrossRefGoogle Scholar
Rogers, R.D., Seddon, K.R., Science 302, 792 (2003).CrossRefGoogle Scholar
Wilkes, J.S., Green Chem. 4, 73 (2002).CrossRefGoogle Scholar
Seddon, K.R., Nat. Mater. 2, 363 (2003).CrossRefGoogle Scholar
Noda, A., Hayamizu, K., Watanabe, M., J. Phys. Chem. B 105, 4603 (2001).CrossRefGoogle Scholar
Tokuda, H., Tsuzuki, S., Susan, M.A.B.H., Hayamizu, K., Watanabe, M., J. Phys. Chem. B 110, 19593 (2006).CrossRefGoogle Scholar
Nakata, N., Kohara, K., Matsumoto, K., Hagiwara, R., J. Chem. Eng. Data 56, 1840 (2011).CrossRefGoogle Scholar
Sakaebe, H., Matsumoto, H., Electrochem. Commun. 5, 594 (2003).CrossRefGoogle Scholar
Garcia, B., Lavallee, S., Perron, G., Michot, C., Armand, M., Electrochim. Acta 49, 4583 (2004).CrossRefGoogle Scholar
Scrosati, B., Garche, J., J. Power Sources 195, 2419 (2010).CrossRefGoogle Scholar
Grätzel, M., J. Photochem. Photobiol. C 4, 145 (2003).CrossRefGoogle Scholar
Greaves, T.L., Drummond, C.J., Chem. Rev. 108, 206 (2008).CrossRefGoogle Scholar
Byrne, N., Angell, C.A., J. Mol. Biol. 378, 707 (2008).CrossRefGoogle Scholar
Kumar, A., Venkatesu, P., RSC Adv. 3, 362 (2013).CrossRefGoogle Scholar
Evans, D.F., Yamauchi, A., Roman, R., Casassa, E.Z., J. Colloid Interface Sci. 88, 89 (1982).CrossRefGoogle Scholar
Atkin, R., De Fina, L.M., Kiederling, U., Warr, G.G., J. Phys. Chem. B 113, 12201 (2009).CrossRefGoogle Scholar
Greaves, T.L., Drummond, C.J., Chem. Soc. Rev. 37, 1709 (2008).CrossRefGoogle Scholar
Hayes, R., Imberti, S., Warr, G.G., Atkin, R., Phys. Chem. Chem. Phys. 13, 3237 (2011).CrossRefGoogle Scholar
von Grotthuss, C.J.D., Ann. Chim. 58, 54 (1806).Google Scholar
Kreuer, K.D., Rabenau, A., Weppner, W., Angew. Chem. Int. Ed. 21, 208 (1982).CrossRefGoogle Scholar
Kreuer, K.D., Paddison, S.J., Spohr, E., Schuster, M., Chem. Rev. 104, 4637 (2004).CrossRefGoogle Scholar
Dippel, T., Kreuer, K.D., Solid State Ionics 46, 3 (1991).CrossRefGoogle Scholar
Noda, A., Susan, M.A.B.H., Kudo, K., Mitsushima, S., Hayamizu, K., Watanabe, M., J. Phys. Chem. B 107, 4024 (2003).CrossRefGoogle Scholar
Zhang, J., Mo, Y., Vukmirovic, M.B., Klie, R., Sasaki, K., Adzic, R.R., J. Phys. Chem. B 108, 10955 (2004).CrossRefGoogle Scholar
Susan, M.A.B.H., Noda, A., Mitsushima, S., Watanabe, M., Chem. Commun. 8, 938 (2003).CrossRefGoogle Scholar
Tokuda, H., Hayamizu, K., Ishii, K., Susan, M.A.B.H., Watanabe, M., J. Phys. Chem. B 108, 16593 (2004).CrossRefGoogle Scholar
Tokuda, H., Hayamizu, K., Ishii, K., Susan, M.A.B.H., Watanabe, M., J. Phys. Chem. B 109, 6103 (2005).CrossRefGoogle Scholar
Ueno, K., Tokuda, H., Watanabe, M., Phys. Chem. Chem. Phys. 12, 15133 (2010).Google Scholar
Bonhôte, P., Dias, A.P., Papageorgiou, N., Kalyanasundaram, K., Grätzel, M., Inorg. Chem. 35, 1168 (1996).CrossRefGoogle Scholar
Zhou, Q., Henderson, W.A., Appetecchi, G.B., Montanino, M., Passerini, S., J. Phys. Chem. B 112, 13577 (2008).CrossRefGoogle Scholar
MacFarlane, D.R., Meakin, P., Sun, J., Amini, N., Forsyth, M., J. Phys. Chem. B 103, 4164 (1999).CrossRefGoogle Scholar
Huddleston, J.G., Visser, A.E., Reichert, W.M., Willauer, H.D., Broker, G.A., Rogers, R.D., Green Chem. 3, 156 (2001).CrossRefGoogle Scholar
Yoshizawa, M., Xu, W., Angell, C.A., J. Am. Chem. Soc. 125, 15411 (2003).CrossRefGoogle Scholar
Luo, H.M., Baker, G.A., Lee, J.S., Pagni, R.M., Dai, S., J. Phys. Chem. B 113, 4181 (2009).CrossRefGoogle Scholar
Miran, M.S., Kinoshita, H., Yasuda, T., Susan, M.A.B.H., Watanabe, M., Phys. Chem. Chem. Phys. 14, 5178 (2012).CrossRefGoogle Scholar
Miran, M.S., Yasuda, T., Susan, M.A.B.H., Dokko, K., Watanabe, M., RSC Adv. 3, 4141 (2013).CrossRefGoogle Scholar
Nakamoto, H., Watanabe, M., Chem. Commun. 24, 2539 (2007).CrossRefGoogle Scholar
Michot, T., Nishimoto, A., Watanabe, M., Electrochim. Acta 45, 1347 (2000).CrossRefGoogle Scholar
Susan, M.A.B.H., Kaneko, T., Noda, A., Watanabe, M., J. Am. Chem. Soc. 127, 4976 (2005).CrossRefGoogle Scholar
Ueno, K., Hata, K., Katakabe, T., Kondoh, M., Watanabe, M., J. Phys. Chem. B 112, 9013 (2008).CrossRefGoogle Scholar
Lee, S.Y., Yasuda, T., Watanabe, M., J. Power Sources 195, 5909 (2010).CrossRefGoogle Scholar
Lee, S.Y., Ogawa, A., Kanno, M., Nakamoto, H., Yasuda, T., Watanabe, M., J. Am. Chem. Soc. 132, 9764 (2010).CrossRefGoogle Scholar
Yasuda, T., Nakamura, S., Honda, Y., Kinugawa, K., Lee, S.Y., Watanabe, M., ACS Appl. Mater. Interfaces 4, 1783 (2012).CrossRefGoogle Scholar
Loo, Y.L., Register, R.A., Macromolecules 35, 2365 (2002).CrossRefGoogle Scholar
Sun, L., Zhu, L., Ge, Q., Quirk, R.P., Xue, C., Cheng, S.Z.D., Hsiao, B.S., Aviala-Orta, C.A., Sics, I., Cantino, M.E., Polymer 45, 2931 (2004).CrossRefGoogle Scholar
Johnson, L., Ejigu, A., Licence, P., Walsh, D.A., J. Phys. Chem. C 116, 18048 (2012).CrossRefGoogle Scholar
Yasuda, T., Ogawa, A., Kanno, M., Mori, K., Sakakibara, K., Watanabe, M., Chem. Lett. 38, 692 (2009).CrossRefGoogle Scholar
Yasuda, T., Nakamura, S., Lee, S.Y., Watanabe, M., Chem. Lett. 39, 678 (2010).CrossRefGoogle Scholar