Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-13T05:49:10.790Z Has data issue: false hasContentIssue false

Reverse Engineering: Learning from Proteins How to Enhance the Performance of Synthetic Nanosystems

Published online by Cambridge University Press:  31 January 2011

Get access

Abstract

Proteins are nature's workhorses. They enable living systems to use available energy sources and convert energy from one form into another. Understanding the underlying design principles of how proteins have evolved to fulfill the necessary functions of life can provide researchers with new insights into how to enhance the performance of synthetic nanosystems with far greater sophistication. This review summarizes the relationship between various protein functions and the underlying engineering principles of their overall structures. For example, proteins can specifically recognize other biomolecules with a selectivity and affinity several orders of magnitude superior to their synthetic counterparts. Mimicking a protein binding site with a structurally fixed synthetic analogue is insufficient, since structural changes in the active sites enhance molecular recognition and the catalytic activity of proteins. Recent data also show that protein function can be switched by stretching proteins into nonequilibrium states under physiological conditions. Schemes by which the exposure and structure of recognition sites are switched can be implemented in the design of mechanically responsive synthetic and hybrid systems. Motor proteins, finally, are the jewel in nature's crown, as they can convert one free-energy form into another to generate mechanical force. It is thus of considerable interest to integrate the chemically powered engines into synthetic materials and devices. Finally, we have to advance our ability to assemble nanocomponents into functional systems. Again, lessons can be learned from how biology solves the challenge of systems integration.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Arnold, F.H., Nature 409 (2001) p. 253.CrossRefGoogle Scholar
2.Pedersen, H., Holder, S., Sutherlin, D.P., Schwitter, U., King, D.S., and Schultz, P.G., Proc. Natl. Acad. Sci. U.S.A. 95 (1998) p. 10523.CrossRefGoogle Scholar
3.Schultz, P.G. and Lerner, R.A., Nature 418 (2002) p. 485.CrossRefGoogle Scholar
4.Frechet, J.M., Proc. Natl. Acad. Sci. U.S.A. 99 (2002) p. 4782.CrossRefGoogle Scholar
5.Schluter, A.D. and Rabe, J.P., Angew. Chem., Int. Ed. Engl. 39 (2000) p. 864.3.0.CO;2-E>CrossRefGoogle Scholar
6.Padilla De Jesus, O.L., Ihre, H.R., Gagne, L., Frechet, J.M., and Szoka, F.C. Jr, Bioconjugate Chem. 13 (2002) p. 453.CrossRefGoogle Scholar
7.Vlatakis, G., Andersson, L.I., Muller, R., and Mosbach, K., Nature 361 (1993) p. 645.CrossRefGoogle Scholar
8.Andersson, L.I., Muller, R., Vlatakis, G., and Mosbach, K., Proc. Natl. Acad. Sci. U.S.A. 92 (1995) p. 4788.CrossRefGoogle Scholar
9.Shi, H., Tsai, W.B., Garrison, M.D., Ferrari, S., and Ratner, B.D., Nature 398 (1999) p. 593.CrossRefGoogle Scholar
10.Boal, A.K., Ilhan, F., DeRouchey, J.E., Thurn-Albrecht, T., Russell, T.P., and Rotello, V.M., Nature 404 (2000) p. 746.CrossRefGoogle Scholar
11.Boal, A.K. and Rotello, V.M., J. Am. Chem. Soc. 124 (2002) p. 5019.CrossRefGoogle Scholar
12.Credo, G.M., Boal, A.K., Das, K., Galow, T.H., Rotello, V.M., Feldheim, D.L., and Gorman, C.B., J. Am. Chem. Soc. 124 (2002) p. 9036.CrossRefGoogle Scholar
13.Koshland, D.E., Annu. Rev. Biochem. 37 (1967) p. 359.CrossRefGoogle Scholar
14.Huber, R., Nature 280 (1979) p. 538.CrossRefGoogle Scholar
15.Gerstein, M., Lesk, A.M., and Chothia, C., Biochemistry 33 (1994) p. 6739.CrossRefGoogle Scholar
16.Carr, P.A., Erickson, H.P., and Palmer, A.G. III, Structure 5 (1997) p. 949.CrossRefGoogle Scholar
17.Yon, J.M., Perahia, D., and Ghelis, C., Biochimie 80 (1998) p. 33.CrossRefGoogle Scholar
18.Testa, B. and Bojarski, A.J., Eur. J. Pharm. Sci. 11 (Suppl. 2) (2000) p. S3.CrossRefGoogle Scholar
19.Demchenko, A.P., J. Mol. Recognit. 14 (2002) p. 42.3.0.CO;2-8>CrossRefGoogle Scholar
20.Imoto, T., Ueda, T., Tamura, T., Isakari, Y., Abe, Y., Inoue, M., Miki, T., Kawano, K., and Yamada, H., Protein Eng. 7 (1994) p. 743.CrossRefGoogle Scholar
21.Feng, Z., Butler, M.C., Alam, S.L., and Loh, S.N., J. Mol. Biol. 314 (2001) p. 153.CrossRefGoogle Scholar
22.Noonan, R.C., Carter, C.C., and Bagdassarian, C.K., Protein Sci. 11 (2002) p. 1424.CrossRefGoogle Scholar
23.Xie, X.S. and Lu, H.P., J. Biol. Chem. 274 (1999) p. 15967.CrossRefGoogle Scholar
24.Sumi, H. and Ulstrup, J., Biochim. Biophys. Acta 955 (1988) p. 26.CrossRefGoogle Scholar
25.Shibata, Y., Sci. Prog. 83 (2000) p. 193.Google Scholar
26.Abaturov, L.V., Lebedev Iu, O., and Nosova, N.G., Mol. Biol. (Moscow) 17 (1983) p. 543.Google Scholar
27.Chin, J.W., Martin, A.B., King, D.S., Wang, L., and Schultz, P.G., Proc. Natl. Acad. Sci. U.S.A. 99 (2002) p. 11020.CrossRefGoogle Scholar
28.Sundberg, E.J. and Mariuzza, R.A., Struct. Fold. Des. 8 (2000) p. R137.CrossRefGoogle Scholar
29.Ma, B., Shatsky, M., Wolfson, H.J., and Nussinov, R., Protein Sci. 11 (2002) p. 184.CrossRefGoogle Scholar
30.DeLano, W.L., Ultsch, M.H., de Vos, A.M., and Wells, J.A., Science 287 (2000) p. 1279.CrossRefGoogle Scholar
31.Vazquez-Laslop, N., Zheleznova, E.E., Markham, P.N., Brennan, R.G., and Neyfakh, A.A., Biochem. Soc. Trans. 28 (2000) p. 517.CrossRefGoogle Scholar
32.Zwahlen, C., Li, S.C., Kay, L.E., Pawson, T., and Forman-Kay, J.D., EMBO J. 19 (2000) p. 1505.CrossRefGoogle Scholar
33.De, W.L.Lano, Curr. Opin. Struct. Biol. 12 (2002) p. 14.Google Scholar
34.Gerstein, M. and Krebs, W., Nucleic Acids Res. 26 (1998) p. 4280.CrossRefGoogle Scholar
35.Isralewitz, B., Gao, M., and Schulten, K., Curr. Opin. Struct. Biol. 11 (2001) p. 224.CrossRefGoogle Scholar
36.Vogel, V., Thomas, W.E., Craig, D.W., Krammer, A., and Baneyx, G., Tr ends Biotechnol. 19 (2001) p. 416.CrossRefGoogle Scholar
37.Thomas, W.E., Trintchina, E., Forero, M., Vogel, V., and Sokurenko, E.V., Cell 109 (2002) p. 913.CrossRefGoogle Scholar
38.Bell, G.I., Science 200 (1978) p. 618.CrossRefGoogle Scholar
39.Evans, E., Annu. Rev. Biophys. Biomol. Struct. 30 (2001) p. 105.CrossRefGoogle Scholar
40.Craig, D., Krammer, A., Schulten, K., and Vogel, V., Proc. Natl. Acad. Sci. U.S.A. 98 (2001) p. 5590.CrossRefGoogle Scholar
41.Oberhauser, A.F., Badilla-Fernandez, C., Carrion-Vazquez, M., and Fernandez, J.M., J. Mol. Biol. 319 (2002) p. 433.CrossRefGoogle Scholar
42.Craig, D., Gao, M., Schulten, K., and Vogel, V. (2002) (unpublished manuscript).Google Scholar
43.Baneyx, G., Baugh, L., and Vogel, V., Proc. Natl. Acad. Sci. U.S.A. 98 (2001) p. 14464.CrossRefGoogle Scholar
44.Baneyx, G., Baugh, L., and Vogel, V., Proc. Natl. Acad. Sci. U.S.A. 99 (2002) p. 5139.CrossRefGoogle Scholar
45.Fukai, F., Takahashi, H., Habu, Y., Kubushiro, N., and Katayama, T., Biochem. Biophys. Res. Commun. 220 (1996) p. 394.CrossRefGoogle Scholar
46.Fukai, F., Hasebe, S., Ueki, M., Mutoh, M., Ohgi, C., Takahashi, H., Takeda, K., and Katayama, T., J. Biochem. (Tokyo) 121 (1997) p. 189.Google Scholar
47.Ingham, K.C., Brew, S.A., Huff, S., and Litvinovich, S.V., J. Biol. Chem. 272 (1997) p. 1718.CrossRefGoogle Scholar
48.Zhong, C., Chrzanowska-Wodnicka, M., Brown, J., Shaub, A., Belkin, A.M., and Burridge, K., J. Cell Biol. 141 (1998) p. 539.CrossRefGoogle Scholar
49.Fukai, F., Kamiya, S., Ohwaki, T., Goto, S., Akiyama, K., Goto, T., and Katayama, T., Cell Mol. Biol. 46 (2000) p. 145.Google Scholar
50.Kato, R., Ishikawa, T., Kamiya, S., Oguma, F., Ueki, M., Goto, S., Nakamura, H., Katayama, T., and Fukai, F., Clin. Cancer Res. 8 (2002) p. 2455.Google Scholar
51.Krammer, A., Craig, D., Thomas, W.E., Schulten, K., and Vogel, V., Matrix Biol. 21 (2002) p. 139.CrossRefGoogle Scholar
52.Krammer, A., Lu, H., Isralewitz, B., Schulten, K., and Vogel, V., Proc. Natl. Acad. Sci. U.S.A. 96 (1999) p. 1351.CrossRefGoogle Scholar
53.Schwarzbauer, J.E. and Sechler, J.L., Curr. Opin. Cell Biol. 11 (1999) p. 622.CrossRefGoogle Scholar
54.Ohashi, T., Kiehart, D.P., and Erickson, H.P., J. Cell Sci. 115 (2002) p. 1221.CrossRefGoogle Scholar
55.Nishizaka, T., Shi, Q., and Sheetz, M.P., Proc. Natl. Acad. Sci. U.S.A. 97 (2000) p. 692.CrossRefGoogle Scholar
56.Tran, H., Pankov, R., Tran, S.D., Hampton, B., Burgess, W.H., and Yamada, K.M., J. Cell Sci. 115 (2002) p. 2031.CrossRefGoogle Scholar
57.Vogel, V. and Baneyx, G., “Tissue Engineering: How Many Pieces to the Puzzle?Annu. Rev. Biomed. Eng. (2002) in press.Google Scholar
58.Howard, J., Mechanics of Motor Proteins and the Cytoskeleton (Sinauer, Sunderland, MA, 2001).Google Scholar
59.Koumura, N., Zijlstra, R.W., van Delden, R.A., Harada, N., and Feringa, B.L., Nature 401 (1999) p. 152.CrossRefGoogle Scholar
60.Feringa, B.L., Acc. Chem. Res. 34 (2001) p. 504.CrossRefGoogle Scholar
61.Stoddart, J.F., Acc. Chem. Res. 34 (2001) p. 410.CrossRefGoogle Scholar
62.Sestelo, J.P. and Kelly, T.R., Appl. Phys. A 75 (2002) p. 337.CrossRefGoogle Scholar
63.Schnitzer, M.J., Visscher, K., and Block, S.M., Nat. Cell Biol. 2 (2000) p. 718.CrossRefGoogle Scholar
64.Oster, G. and Wang, H., Biochim. Biophys. Acta 1458 (2000) p. 482.CrossRefGoogle Scholar
65.Schief, W.R. and Howard, J., Curr. Opin. Cell Biol. 13 (2001) p. 19.CrossRefGoogle Scholar
66.Bustamante, C., Keller, D., and Oster, G., Acc. Chem. Res. 34 (2001) p. 412.CrossRefGoogle Scholar
67.Noji, H., Yasuda, R., Yoshida, M., and Kinosita, K. Jr, Nature 386 (1997) p. 299.CrossRefGoogle Scholar
68.Soong, R.K., Bachand, G.D., Neves, H.P., Olkhovets, A.G., Craighead, H.G., and Montemagno, C.D., Science 290 (2000) p. 1555.CrossRefGoogle Scholar
69.Hess, H. and Vogel, V., J. Biotechnol. 82 (2001) p. 67.Google Scholar
70.Hess, H., Clemmens, J., Qin, D., Howard, J., and Vogel, V., Nano Lett. 1 (2001) p. 235.CrossRefGoogle Scholar
71.Hess, H., Clemmens, J., Matzke, C.M., Bachard, D., Bunker, B.C., and Vogel, V., Appl. Phys. A 75 (2002) p. 309.CrossRefGoogle Scholar
72.Hiratsuka, Y., Tada, T., Oiwa, K., Kanayama, T., and Uyeda, T.Q., Biophys. J. 81 (2001) p. 1555.CrossRefGoogle Scholar
73.Hess, H., Howard, J., and Vogel, V., Nano Lett. 2 (2002) p. 113.CrossRefGoogle Scholar
74.Hess, H., Howard, J., and Vogel, V., Nano Lett. 2 (2002) p. 1113.CrossRefGoogle Scholar