Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-26T22:41:11.405Z Has data issue: false hasContentIssue false

Scaffolds for Tissue Engineering

Published online by Cambridge University Press:  31 January 2011

Get access

Abstract

Devices for tissue engineering comprise scaffolds with the appropriate chemistry and architecture to promote cell infiltration and colonization. The scaffold is designed with biology in mind, and thus the architecture and chemistry differ according to tissue type. In this review, we focus on scaffolds for two tissue types—bone and nervous tissue—and describe different approaches used to create them. The appropriate scaffold for a hard tissue such as bone has a high degree of interconnected macroporosity and allows the rapid invasion of cells while maintaining a rigid structure. Several approaches are described for constructing tissue-engineering scaffolds for bone. The appropriate scaffold for soft tissues like nerve fibers (e.g., axons, which conduct nerve impulses) also has a high degree of interconnected pores; however, the pores may require orientation and may be smaller. Homogeneous, high-water-content hydrogels with mechanical properties that match the soft nerve tissue are commonly used as a scaffold, and the methods used to make these are reviewed.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Yannas, I.V., Gordon, P.L., Huang, C., Silver, F.H., and Burke, J.F., U.S. Patent No. 4,280,954 (1981).Google Scholar
2.Yannas, I.V. and Burke, J.F., J. Biomed. Mater. Res. 14 (1980) p. 65.CrossRefGoogle Scholar
3.Yannas, I.V., Burke, J.F., Gordon, P.L., Huang, C., and Rubenstein, R.H., J. Biomed. Mater. Res. 14 (1980) p. 107.CrossRefGoogle Scholar
4.Dagalakis, N., Flink, J., Stasikelis, P., Burke, J.F., and Yannas, I.V., J. Biomed. Mater. Res. 14 (1980) p. 511.CrossRefGoogle Scholar
5.Yannas, I.V., Burke, J.F., Gordon, P.L., and Huang, C., U.S. Patent No. 4,060,081 (1977).Google Scholar
6.Yannas, I.V., Burke, J.F., Quinby, W.C. Jr, Bondoc, C.C., and Jung, W.K., Ann. Surg. 194 (1981) p. 413.Google Scholar
1.Chakkalakal, D.A., Strates, B.S., Garvin, K.L., Novak, J.R., Fritz, E.D., Mollner, T.J., and McGuire, M.H., Tissue Eng. 7 (2) (2001) p. 161.CrossRefGoogle Scholar
2.Mauney, J.R., Blumberg, J., Pirum, M., Volloch, V., and Kaplan, D.L., Presented at the Society for Biomaterials Meeting, Tampa, FL, 2002, Abstract 30.Google Scholar
3.Stevenson, S., Clin. Orthop. Rel. Res. 355 (1998) (Suppl.) p. S239.CrossRefGoogle Scholar
4.Delloye, C., Simon, P., Nyssen-Behets, C., Banse, X., Bresler, F., and Schmitt, D., Clin. Orthop. Rel. Res. 396 (2002) p. 240.CrossRefGoogle Scholar
5.Gomes, M.E., Ribeiro, A.S., Malafaya, P.B., Reis, R.L., and Cunha, A.M., Biomaterials 22 (9) (2001) p. 883.CrossRefGoogle Scholar
6.Madihally, S.V. and Matthew, H.W., Biomaterials 20 (12) (1999) p. 1133.Google Scholar
7.Suh, J.K. and Matthew, H.W., Biomaterials 21 (24) (2000) p. 2589.Google ScholarPubMed
8.Rocha, L.B., Goissis, G., and Rossi, M.A., Biomaterials 23 (2) (2002) p. 449.Google Scholar
9.Petite, H., Viateau, V., Bensaid, W., Meunier, A., de Pollak, C., Bourguignon, M., Oudina, K., Sedel, L., and Guillemin, G., Nat. Biotech. 18 (9) (2000) p. 959.CrossRefGoogle Scholar
10.Sartoris, D.J., Gershuni, D.H., Akeson, W.H., Holmes, R.E., and Resnick, D., Radiology 159 (1) (1986) p. 133.CrossRefGoogle Scholar
11.Irwin, R.B., Bernhard, M., and Biddinger, A., Am. J. Orthop. 30 (7) (2001) p. 544.Google Scholar
12.Vacanti, C.A., Bonassar, L.J., Vacanti, M.P., and Shufflebarger, J., N. Engl. J. Med. 344 (20) (2001) p. 1511.Google Scholar
13.Flatley, T.J., Lynch, K.L., and Benson, M., Clin. Orthop. 179 (1983) p. 246.Google Scholar
14.Goshima, J., Goldberg, V.M., and Caplan, A.I., Clin. Orthop. 269 (1991) p. 274.Google Scholar
15.Kon, E., Muraglia, A., Corsi, A., Bianco, P., Marcacci, M., Martin, I., Boyde, A., Ruspantini, I., Chistolini, P., Rocca, M., Giardino, R., Cancedda, R., and Quarto, R., J. Biomed. Mater. Res. 49 (3) (2000) p. 328.Google Scholar
16.Laurencin, C.T., El-Amin, S.F., Ibim, S.E., Willoughby, D.A., Attawia, M., Allcock, H.R., and Ambrosio, A.A., J. Biomed. Mater. Res. 30 (2) (1996) p. 133.3.0.CO;2-S>CrossRefGoogle Scholar
17.Lhommeau, C.L., Levene, H., Abramson, S., and Kohn, J., Tissue Eng. 4 (4) (1998) p. 468.Google Scholar
18.Zein, I., Hutmacher, D.W., Tan, K.C., and Teoh, S.H., Biomaterials 23 (4) (2002) p. 1169.Google Scholar
19.Fisher, J.P., Holland, T.A., Dean, D., Engel, P.S., and Mikos, A.G., J. Biomater. Sci. Polym. Ed. 12 (6) (2001) p. 673.CrossRefGoogle Scholar
20.Ishaug-Riley, S.L., Crane-Kruger, G.M., Yaszemski, M.J., and Mikos, A.G., Biomaterials 19 (15) (1998) p. 1405.CrossRefGoogle Scholar
21.Holy, C.E., Shoichet, M.S., and Davies, J.E., Cells Mater. 7 (3) (1997) p. 223.Google Scholar
22.Agrawal, C.M., Huang, D., Schmitz, J.P., and Athanasiou, K.A., Tissue Eng. 3 (4) (1997) p. 345.CrossRefGoogle Scholar
23.Ma, P.X. and Choi, J.W., Tissue Eng. 7 (1) (2001) p. 23.Google Scholar
24.Thomson, R.C., Yaszemski, M.J., Powers, J.M., and Mikos, A.G., Biomaterials 19 (21) (1998) p. 1935.CrossRefGoogle Scholar
25.Marra, K.G., Szem, J.W., Kumta, P.N., DiMilla, P.A., and Weiss, L.E., J. Biomed. Mater. Res. 47 (3) (1999) p. 324.Google Scholar
26.Ma, P.X., Zhang, R., Xiao, G., and Franceschi, R., J. Biomed. Mater. Res. 54 (2) (2001) p. 284.3.0.CO;2-W>CrossRefGoogle Scholar
27.Holy, C.E., Shoichet, M.S., Campbell, A.A., Song, L., and Davies, J.E., in Proc. 11th Int. Symp. on Bioceramics, edited by LeGeros, R.Z. (World Scientific, River Edge, NJ, 1998) p. 509.Google Scholar
28.Yaszemski, M.J., Oldham, J.B., Lu, L., and Currier, B.L., in Bone Engineering, edited by Davies, J.E. (em2 Inc., Toronto, 2000) p. 541.Google Scholar
29.Colton, C.K., Cell Transplant. 4 (4) (1995) p. 415.CrossRefGoogle Scholar
30.Sanders, J.E., Malcolm, S.G., Bale, S.D., Wang, Y.N., and Lamont, S., Microvasc. Res. 64 (1) (2002) p. 174.CrossRefGoogle Scholar
31.Mooney, D.J., Kaufmann, P.M., Sano, K., McNamara, K.M., Vacanti, J.P., and Langer, R., Transplant. Proc. 26 (6) (1994) p. 3425.Google Scholar
32.Murphy, W.L., Peters, M.C., Kohn, D.H., and Mooney, D.J., Biomaterials 21 (24) (2000) p. 2521.CrossRefGoogle Scholar
33.Shea, L.D., Smiley, E., Bonadio, J., and Mooney, D.J., Nat. Biotech. 17 (6) (1999) p. 551.CrossRefGoogle Scholar
34.Whang, K., Tsai, D.C., Nam, E.K., Aitken, M., Sprague, S.M., Patel, P.K., and Healy, K.E., J. Biomed. Mater. Res. 42 (4) (1998) p. 491.Google Scholar
35.Zegzula, H.D., Buck, D.C., Brekke, J., Wozney, J.M., and Hollinger, J.O., J. Bone Joint Surg. Am. 79 (12) (1997) p. 1778.CrossRefGoogle Scholar
36.Rutkowski, G.E., Miller, C.A., and Mallapragada, S.K., in Methods of Tissue Engineering, edited by Atala, A. and Lanza, R.P. (Academic Press, San Diego, 2002) p. 681.Google Scholar
37.Mikos, A.G., Sarakinos, G., Leite, S.M., Vacanti, J.P., and Langer, R., Biomaterials 14 (5) (1993) p. 323.CrossRefGoogle Scholar
38.Whang, K. and Healy, K.E., in Methods of Tissue Engineering, edited by Atala, A. and Lanza, R.P. (Academic Press, San Diego, 2002) p. 697.Google Scholar
39.Zhang, R. and Ma, P.X., in Methods of Tissue Engineering, edited by Atala, A. and Lanza, R.P. (Academic Press, San Diego, 2002) p. 715.Google ScholarPubMed
40.Richardson, T.P., Peters, M.C., and Mooney, D.J., in Methods of Tissue Engineering, edited by Atala, A. and Lanza, R.P. (Academic Press, San Diego, 2002) p. 733.Google Scholar
41.Mikos, A.G., Bao, Y., Cima, L.G., Ingber, D.E., Vacanti, J.P., and Langer, R., J. Biomed. Mater. Res. 27 (2) (1993) p. 183.CrossRefGoogle Scholar
42.Hutmacher, D.W., Biomaterials 21 (24) (2000) p. 2529.Google Scholar
43.Yang, S., Leong, K.F., Du, Z., and Chua, C.K., Tissue Eng. 8 (10) (2002) p. 1.Google Scholar
44.Teoh, S.H., Hutmacher, D.W., Tan, K.C., Tam, K.F., and Zein, I., U.S. Patent No. 60/233974 (September 20, 2000).Google Scholar
45.Ishaug, S.L., Crane, G.M., Miller, M.J., Yasko, A.W., Yaszemski, M.J., and Mikos, A.G., J. Biomed. Mater. Res. 36 (1) (1997) p. 17.3.0.CO;2-O>CrossRefGoogle Scholar
46.Kwon, I.K., Park, K.D., Choi, S.W., Lee, S.H., Lee, E.B., Na, J.S., Kim, S.H., and Kim, Y.H., J. Biomater. Sci. Polym. Ed. 12 (10) (2001) p. 1147.Google Scholar
47.Hodges, D.E., McNally, K.M., and Welch, A.J., J. Biomed. Opt. 6 (4) (2001) p. 427.Google Scholar
48.Wang, C., Wang, Q., Mao, T., Wang, H., and Zhu, X., Sheng Wu Yi Xue Gong Cheng Xue Za Zhi 17 (4) (2002) p. 396.Google Scholar
49.Murphy, W.L., Kohn, D.H., and Mooney, D.J., J. Biomed. Mater. Res. 50 (1) (2000) p. 50.Google Scholar
50.Goodwin, C.J., Braden, M., Downes, S., and Marshall, N.J., J. Biomed. Mater. Res. 40 (2) (1998) p. 204.Google Scholar
51.Thomson, R.C., Yaszemski, M.J., Powers, J.M., and Mikos, A.G., J. Biomater. Sci. Polym. Ed. 7 (1) (1995) p. 23.Google Scholar
52.Murphy, W.L., Dennis, R.G., Kileny, J.L., and Mooney, D.J., Tissue Eng. 8 (1) (2002) p. 43.Google Scholar
53.Karp, J.M., Shoichet, M.S., and Davies, J.E., J. Biomed. Mater. Res. 64A (2) (2003) p. 388.Google Scholar
54.Richardson, P.M., McGuinness, U.M., and Aguayo, A.J., Nature 284 (1980) p. 264.Google Scholar
55.Levi, A.D.O., Dancausse, H., Li, X.M., Duncan, S., Horkey, L., and Oliviera, M., J. Neurosurg. 96 (2) (2002) (Suppl.) p. 197.Google Scholar
56.Chang, G.L., Hung, T.K., and Feng, W.W., J. Biomech. Eng. 110 (1988) p. 115.Google Scholar
57.Mainwairing, M.E., Walsh, J.F., and Tresco, P.A., “Remodeling Fibroblastic Tissue at the Neural Biomaterial Interface,” presented at the Society for Biomaterials Meeting, Tampa, FL, 2002, Abstract 46.Google Scholar
58.Woerly, S., Petrov, P., Sykova, E., Roitbak, T., Simonova, Z., and Harvey, A.R., Tissue Eng. 5 (1999) p. 467.Google Scholar
59.Dubey, N., Letourneau, P.C., and Tranquillo, R.T., Biomaterials 22 (2001) p. 1065.Google Scholar
60.Dubey, N., Letourneau, P.C., and Tranquillo, R.T., Exp. Neurol. 158 (1999) p. 338.CrossRefGoogle Scholar
61.Maquet, V., Martin, D., Malgrange, B., Franzen, R., Schoenen, J., Moonen, G., and Jerome, R., J. Biomed. Mater. Res. 52 (4) (2000) p. 639.Google Scholar
62.Maquet, V., Martin, D., Scholtes, F., Franzen, R., Schoenen, J., Moonen, G., and Jerome, R., Biomaterials 22 (10) (2001) p. 1137.CrossRefGoogle Scholar
63.Gautier, S.E., Oudega, M., Fragoso, M., Chapon, P., Plant, G.W., Bunge, M.B., and Parel, J.M., J. Biomed. Mater. Res. 42 (4) (1998) p. 642.3.0.CO;2-K>CrossRefGoogle Scholar
64.Oudega, M., Gautier, S.E., Chapon, P., Fragoso, M., Bates, M.L., Parel, J.M., and Bunge, M.B., Biomaterials 22 (10) (2001) p. 1125.CrossRefGoogle Scholar
65.Vacanti, M.P., Leonard, J.L., Dore, B., Bonassar, L.J., Cao, Y., Stachelek, S.J., Vacanti, J.P., O'Connell, F., Yu, C.S., Farwell, A.P., and Vacanti, C.A., Transplant. Proc. 33 (1–2) (2001) p. 592.CrossRefGoogle Scholar
66.Woerly, S., U.S. Patent No. 5,863,551 (January 26, 1999).Google Scholar
67.Plant, G.W., Chirila, T.V., and Harvey, A.R., Cell Transplant. 7 (4) (1998) p. 381.Google Scholar
68.Plant, G.W., Harvey, A.R., and Chirila, T.V., Brain Res. 671 (1) (1995) p. 119.Google Scholar
69.Plant, G.W., Woerly, S., and Harvey, A.R., Exp. Neurol. 143 (1997) p. 287.CrossRefGoogle Scholar
70.Spilker, M.H., Yannas, I.V., Kostyk, S.K., Norregaard, T.V., Hsu, H.P., and Spector, M., Restor. Neurol. Neurosci. 18 (1) (2001) p. 23.Google Scholar
71.Dalton, P.D., Tsai, E., Van Bendegem, R.L., Tator, C.H., and Shoichet, M.S., “Hydrogel Nerve Guides Promote Regeneration in the Central Nervous System,” presented at the Society for Biomaterials Meeting, Tampa, FL, 2002, Abstract 22.Google Scholar
72.Davies, J.E., Karp, J.M., and Baksh, D., Methods of Tissue Engineering, edited by Atala, A. and Lanza, R.P. (Academic Press, San Diego, CA, 2002) p. 333.Google Scholar