Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-28T22:11:56.587Z Has data issue: false hasContentIssue false

The second revolution in atom probe tomography

Published online by Cambridge University Press:  17 February 2012

Thomas F. Kelly
Affiliation:
Cameca Instruments, Inc., Madison, WI; thomas.kelly@ametek.com.
David J. Larson
Affiliation:
Cameca Instruments, Inc., Madison, WI; david.larson@ametek.com.
Get access

Abstract

There has been explosive growth in the performance and consequential adoption of atom probe tomography in the past decade, which was fueled by the development of the commercial local-electrode atom probe (LEAP) and technologies for specimen preparation. The LEAP introduced to atom probes orders-of-magnitude increases in data collection rates and field of view while improving mass resolution and greatly improving ease of use. These developments constitute the second revolution in the field since the invention of the atom probe in 1967 and atom probe tomography in 1973: the invention of the three-dimensional atom probe was the first revolution. This article seeks to put this second revolution into historical perspective by recounting the essential developments that led to this point. In particular, the role of Erwin Müller, the inventor of the atom probe and related instruments, is highlighted. From the invention of the field emission electron microscope to the field ion microscope to the atom probe and beyond, he created a field of microscopy that is thriving today. Next, the state of the art in atom probe instrumentation is illustrated with a current application. Finally, a brief look toward future developments is provided, which may include superconducting detectors and integration of atom probes with transmission electron microscopes.

Type
Research Article
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Müller, E.W., Panitz, J.A., McLane, S.B., Rev. Sci. Instrum. 39, 83 (1968).CrossRefGoogle Scholar
2.Panitz, J.A., Rev. Sci. Instrum. 44, 1034 (1973).CrossRefGoogle Scholar
3.Cerezo, A., Godfrey, T.J., Smith, G.D.W., Rev. Sci. Instrum. 59, 862 (1988).CrossRefGoogle Scholar
4.Kelly, T.F., Camus, P.P., Larson, D.J., Holzman, L.M., Bajikar, S.S., Ultramicroscopy 62, 29 (1996).CrossRefGoogle Scholar
5.Nishikawa, O., Kimoto, M., Appl. Surf. Sci. 76/77, 424 (1994).Google Scholar
6.Larson, D.J., Foord, D.T., Petford-Long, A.K., Liew, H., Blamire, M.G., Cerezo, A., Smith, G.D.W., Ultramicroscopy 79, 287 (1999).CrossRefGoogle Scholar
7.Bostel, A., Blavette, D., Menand, A., Sarrau, A., J. Phys., Colloque C8, Suppl. 50 (11), 501 (1989).Google Scholar
8.Thomson, J.J., Philos. Mag. 44, 293 (1897).Google Scholar
9.Rutherford, E., Philos. Mag. 6(21), 669 (May 1911).Google Scholar
10.Bohr, N., Philos. Mag. 26, 1 (1913).Google Scholar
11.Bragg, W.L., Proc. Cambridge Philos. Soc. 17, 43 (1913).Google Scholar
12.Fowler, R.H., Nordheim, L.W., Proc. R. Soc. London, Ser. A 119, 173 (1928).Google Scholar
13.Müller, E.W., Zh. Tekh. Fiz. 17, 412 (1936).Google Scholar
14.Müller, E.W., Z. Phys. 120, 270 (1943).Google Scholar
15.Müller, E.W., Z. Phys. 31, 136 (1951).CrossRefGoogle Scholar
16.Melmed, J., Appl. Surf. Sci. 94/95, 17 (1996).CrossRefGoogle Scholar
17.Müller, E.W., Z. Naturforsch. 11a, 88 (1956).Google Scholar
18.Müller, E.W., J. Appl. Phys. 27, 474 (1956).CrossRefGoogle Scholar
19.Barofsky, D.F., Müller, E.W., Surf. Sci. 10, 177 (1968).Google Scholar
20.Panitz, J.A., Microsc. Microanal. 4 (S2), 74 (1998).Google Scholar
21.Poschenrieder, W.P., Int. J. Mass Spectrom. Ion Phys. 9, 357 (1972).Google Scholar
22.Mamyrin, B.A., Karataev, V.I., Shmikk, D.V., Zagulin, V.A., Sov. Phys. JETP 3, 45 (1973).Google Scholar
23.Young, R., Ward, J., Scire, F., Rev. Sci. Instrum. 43, 999 (1972).CrossRefGoogle Scholar
24.Binnig, G., Rohrer, H., Appl. Phys. Lett. 40, 178 (1982).Google Scholar
25.Miller, M.K., presentation at Microbeam Analysis Society Annual Meeting, Albuquerque, NM (1986).Google Scholar
26.Miller, M.K., Atom Probe Tomography Analysis at the Atomic Level (Kluwer Academic/Plenum Publishers, New York, 2000), p. 12.Google Scholar
27.Kelly, T.F., Mancini, D.C., McCarthy, J.J., Zreiba, N.A., Surf. Sci. 246, 396 (1991).CrossRefGoogle Scholar
28.Kelly, T.F., Zreiba, N.A., Howell, B.D., Bradley, F.J., Surf. Sci. 246, 377 (1991).CrossRefGoogle Scholar
29.Larson, D.J., Camus, P.P., Kelly, T.F., Appl. Surf. Sci. 67, 473 (1993).Google Scholar
30.Nishikawa, O., Kimoto, M., Appl. Surf. Sci. 76, 424 (1994).CrossRefGoogle Scholar
31.Spindt, C.A., Brodie, I., Humphrey, L., Westerberg, E.R., J. Appl. Phys. 47, 5248 (1976).Google Scholar
32.Kelly, T.F., Camus, P.P., Larson, D.J., Holzman, L.M., Bajikar, S.S., Ultramicroscopy 62, 29 (1996).Google Scholar
33.Kelly, T.F., Camus, P.P., Larson, D.J., Holzman, L.M., Mater. Res. Soc. Symp. Proc. 332, 587 (1994).Google Scholar
34.Waugh, A.R., Payne, S., Worrall, G.M., Smith, G.D.W., J. Physique 43, 207 (1984).Google Scholar
35.Alexander, K.B., Angelini, P., Miller, M.K., J. Physique 50, 549 (1989).Google Scholar
36.Kelly, T.F., Martens, R.L., Goodman, S.L., U.S. patent 6,576,900 (2003).Google Scholar
37.Miller, M.K., Russell, K.F., Thompson, G.B., Ultramicroscopy 102, 287 (2005).CrossRefGoogle Scholar
38.Miller, M.K., Microsc. Microanal. 11 (S2), 808 (2005).Google Scholar
39.Thompson, K., Lawrence, D., Larson, D.J., Olson, J.D., Kelly, T.F., Gorman, B., Ultramicroscopy 107(2–3), 131 (2006).Google Scholar
40.Larson, D.J., Lawrence, D., Lefebvre, W., Olson, D., Prosa, T.J., Reinhard, D.A., Ulfig, R.M., Clifton, P.H., Bunton, J.H., Lenz, D., Renaud, L., Martin, I., Kelly, T.F., in Microscopy of Semiconducting Materials, Walther, T., Midgley, P.A., Cullis, P.A. Eds., J. Physics: Institute of Physics Conference Series 326, 012030 (2011).Google Scholar
41.Mardinly, J., in Microscopy of Semiconducting Materials, Cullis, A.G., Midgley, P.A., Eds. (Springer, Dordrecht, 2007), p. 361.Google Scholar
42.Kellogg, G.L., Tsong, T.T., J. Appl. Phys. 51, 1184 (1980).CrossRefGoogle Scholar
43.Liu, J., Wu, C.-W., Tsong, T.T., Surf. Sci. 246, 157 (1991).Google Scholar
44.Miller, M.K., Kelly, T.F., Microsc. Microanal. 16 (S2), 1856 (2010).Google Scholar
45.Kelly, T.F., Miller, M.K., Rajan, K., Ringer, S.P., Borisevich, A.Y., Dellby, N., Krivanek, O. L., Microsc. Microanal. 17 (S2), 708 (2011).CrossRefGoogle Scholar
46.Krivanek, O.L., Dellby, N., Lupini, A.R., Ultramicroscopy 78, 1 (1999).Google Scholar
47.Petersen, T.C., Ringer, S.P., J. Appl. Phys. 105, 103518 (2009).CrossRefGoogle Scholar
48.Petersen, T.C., Ringer, S.P., Comp. Phys. Comm. 181, 676 (2010).CrossRefGoogle Scholar
49.Irwin, K.D., Sci. Am. 295 (5), 86 (2006).CrossRefGoogle Scholar
50.Kelly, T.F., Microsc. Microanal. 17, 1 (2011).Google Scholar
51.Kelly, T.F., Miller, M.K., Rajan, K., Ringer, S.P., Micros. Today, March 2012.Google Scholar