Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-14T05:02:09.119Z Has data issue: false hasContentIssue false

Shape-controlled synthesis of metal nanocrystals

Published online by Cambridge University Press:  12 April 2013

Younan Xia
Affiliation:
Georgia Institute of Technology; younan.xia@bme.gatech.edu
Xiaohu Xia
Affiliation:
Georgia Institute of Technology; xiaohu.xia@bme.gatech.edu
Yi Wang
Affiliation:
Southwest University, China; yi.wang@bme.gatech.edu
Shuifen Xie
Affiliation:
Xiamen University, China; shuifen.xie@bme.gatech.edu
Get access

Abstract

The ability to control the shape of metal nanocrystals is central to advances in many areas of modern science and technology, including catalysis, plasmonics, electronics, and biomedicine. This article provides a brief overview of our recent efforts toward the development of solution-phase methods for shape-controlled synthesis of metal nanocrystals. While the synthetic methods only involve simple redox reactions, we have been working diligently to understand the complex nucleation and growth mechanisms leading to the formation of metal nanocrystals with desired shapes and related properties. We hope this review will inspire new ideas and concepts in the general area of nanomaterial synthesis, expand our ability to engineer the properties of metals for various applications, and contribute to the realization of sustainable use for some of the scarcest materials.

Type
Research Article
Copyright
Copyright © Materials Research Society 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

This article is based on the Symposium X: Frontiers of Materials Research lecture titled “Simple Chemistry for Complex Nanomaterials” presented by Younan Xia on April 11, 2012, at the MRS Spring Meeting in San Francisco, Calif.

References

Xia, Y., Rogers, J.A., Paul, K.E., Whitesides, G.M., Chem. Rev. 99, 1823 (1999).CrossRefGoogle Scholar
An, K., Somorjai, G.A., ChemCatChem 4, 1512 (2012).CrossRefGoogle Scholar
Jain, P.K., Huang, X., El-Sayed, I.H., El-Sayed, M.A., Acc. Chem. Res. 41, 1578 (2008).CrossRefGoogle Scholar
Anker, J.N., Hall, W.P., Lyandres, O., Shah, N.C., Zhao, J., Van Duyne, R.P., Nat. Mater. 7, 442 (2008).CrossRefGoogle Scholar
Rosi, N.L., Mirkin, C.A., Chem. Rev. 105, 1547 (2005).CrossRefGoogle Scholar
Murphy, C.J., Gole, A.M., Stone, J.W., Sisco, P.N., Alkilany, A.M., Goldsmith, E.C., Baxter, S.C., Acc. Chem. Res. 41, 1721 (2008).CrossRefGoogle Scholar
Hervés, P., Pérez-Lorenzo, M., Liz-Marzán, L.M., Dzubiella, J., Lu, Y., Ballauff, M., Chem. Soc. Rev. 41, 5577 (2012).CrossRefGoogle Scholar
Chen, J., Lim, B., Lee, E.P., Xia, Y., Nano Today 4, 81 (2009).CrossRefGoogle Scholar
Rycenga, M., Cobley, C.M., Zeng, J., Li, W., Moran, C.H., Zhang, Q., Qin, D., Xia, Y., Chem. Rev. 111, 3669 (2011).CrossRefGoogle Scholar
Xia, Y., Xiong, Y., Lim, B., Skrabalak, S.E., Angew. Chem. Int. Ed. 48, 60 (2009).CrossRefGoogle Scholar
Sun, Y., Xia, Y., Science 298, 2176 (2002).CrossRefGoogle Scholar
Wade, L.G., Organic Chemistry, 2nd Edition (Prentice-Hall, New Jersey, 1991), p. 808.Google Scholar
Song, D.-Y., Sprague, R.W., Macleod, H.A., Jacobson, M.R., Appl. Opt. 24, 1164 (1985).CrossRefGoogle Scholar
Yin, Y., Li, Z.-Y., Zhong, Z., Gates, B., Xia, Y., Venkateswaran, S., J. Mater. Chem. 12, 522 (2002).CrossRefGoogle Scholar
Fievet, F., Lagier, J.P., Figlarz, M., MRS Bull. 14, 29 (1989).CrossRefGoogle Scholar
Skrabalak, S.E., Wiley, B.J., Kim, M., Formo, E.V., Xia, Y., Nano Lett. 8, 2077 (2008).CrossRefGoogle Scholar
Sun, Y., Mayers, B., Herricks, T., Xia, Y., Nano Lett. 3, 955 (2003).CrossRefGoogle Scholar
Bailar, J.C., Moeller, T., Kleinberg, J., Guss, C.O., Castellion, M.E., Metz, C., Chemistry, 2nd Edition (Academic Press, Orlando, 1984), p. 781.Google Scholar
Wiley, B., Herricks, T., Sun, Y., Xia, Y., Nano Lett. 4, 1733 (2004).CrossRefGoogle Scholar
Xia, X., Zeng, J., Oetjen, L.K., Li, Q., Xia, Y., J. Am. Chem. Soc. 134, 1793 (2012).CrossRefGoogle Scholar
Zhang, Q., Li, W., Christine, M., Zeng, J., Chen, J., Wen, L.-P., Xia, Y., J. Am. Chem. Soc. 132, 11372 (2010).CrossRefGoogle Scholar
Wiley, B.J., Xiong, Y., Li, Z.-Y., Yin, Y., Xia, Y., Nano Lett. 6, 765 (2006).CrossRefGoogle Scholar
Xiong, Y., Chen, J., Wiley, B.J., Xia, Y., Aloni, S., Yin, Y., J. Am. Chem. Soc. 127, 7332 (2005).CrossRefGoogle Scholar
Zhang, H., Xia, X., Li, W., Zeng, J., Dai, Y., Yang, D., Xia, Y., Angew. Chem. Int. Ed. 49, 5296 (2010).CrossRefGoogle Scholar
Rodríguez-Fernández, J., Pérez-Juste, J., Mulvaney, P., Liz-Marzán, L.M., J. Phys. Chem. B 109, 14257 (2005).CrossRefGoogle Scholar
Siekkinen, A.R., McLellan, J.M., Chen, J., Xia, Y., Chem. Phys. Lett. 432, 491 (2006).CrossRefGoogle Scholar
Zhang, Q., Cobley, C., Au, L., McKiernan, M., Schwartz, A., Wen, L.-P., Chen, J., Xia, Y., ACS Appl. Mater. Interfaces 1, 2044 (2009).CrossRefGoogle Scholar
Zhang, Q., Li, W., Wen, L.-P., Chen, J., Xia, Y., Chem. Eur. J. 16, 10234 (2010).CrossRefGoogle Scholar
Wang, Y., Zheng, Y., Huang, C.Z., Xia, Y., J. Am. Chem. Soc. 135, 1941 (2013).CrossRefGoogle Scholar
Wiley, B., Sun, Y., Mayers, B., Xia, Y., Chem. Eur. J. 11, 454 (2005).CrossRefGoogle Scholar
Xiong, Y., Xia, Y., Adv. Mater. 19, 3385 (2007).CrossRefGoogle Scholar
Xia, X., Zeng, J., Zhang, Q., Moran, C.H., Xia, Y., J. Phys. Chem. C 116, 21647 (2012).CrossRefGoogle Scholar
Zeng, J., Zheng, Y., Rycenga, M., Tao, J., Li, Z.-Y., Zhang, Q., Zhu, Y., Xia, Y., J. Am. Chem. Soc. 132, 8552 (2010).CrossRefGoogle Scholar
Xiong, Y., Cai, H., Wiley, B.J., Wang, J., Kim, M.J., Xia, Y., J. Am. Chem. Soc. 129, 3665 (2007).CrossRefGoogle Scholar
Zhang, Q., Moran, C.H., Xia, X., Rycenga, M., Li, N., Xia, Y., Langmuir 28, 9047 (2012).CrossRefGoogle Scholar
Zhang, H., Jin, M., Xiong, Y., Lim, B., Xia, Y., Acc. Chem. Res. (2012), doi:10.1021/ar300209w.Google Scholar
Jin, M., He, G., Zhang, H., Zeng, J., Xie, Z., Xia, Y., Angew. Chem. Int. Ed. 50, 10560 (2011).CrossRefGoogle Scholar
Kim, D.Y., Yu, T., Cho, E.C., Ma, Y., Park, O.O., Xia, Y., Angew. Chem. Int. Ed. 50, 6328 (2011).CrossRefGoogle Scholar
Xie, S., Lu, N., Xie, Z., Wang, J., Kim, M.J., Xia, Y., Angew. Chem. Int. Ed. 51, 10266 (2012).CrossRefGoogle Scholar
Zhang, H., Li, W., Jin, M., Zeng, J., Yu, T., Yang, D., Xia, Y., Nano Lett. 11, 898 (2011).CrossRefGoogle Scholar
Zeng, J., Zhu, C., Tao, J., Jin, M., Zhang, H., Li, Z.-Y., Zhu, Y., Xia, Y., Angew. Chem. Int. Ed. 51, 2354 (2012).CrossRefGoogle Scholar
Xia, X., Xia, Y., Nano Lett. 12, 6038 (2012).CrossRefGoogle Scholar
Zhu, C., Zeng, J., Tao, J., Johnson, M.C., Schmidt-Krey, I., Blubaugh, L., Zhu, Y., Gu, Z., Xia, Y., J. Am. Chem. Soc. 134, 15822 (2012).CrossRefGoogle Scholar
Sun, Y., Mayers, B.T., Xia, Y., Nano Lett. 2, 481 (2002).CrossRefGoogle Scholar
Wiley, B.J., Sun, Y., Xia, Y., Acc. Chem. Res. 40, 1067 (2007).CrossRefGoogle Scholar
Skrabalak, S.E., Au, L., Li, X., Xia, Y., Nat. Protoc. 2, 2182 (2007).CrossRefGoogle Scholar
Xia, Y., Li, W., Cobley, C.M., Chen, J., Xia, X., Zhang, Q., Yang, M., Cho, E.C., Brown, P.K., Acc. Chem. Res. 44, 914 (2011).CrossRefGoogle Scholar
Au, L., Chen, Y., Zhou, F., Camargo, P.H.C., Lim, B., Li, Z.-Y., Ginger, D.S., Xia, Y., Nano Res. 1, 441 (2008).CrossRefGoogle Scholar
Zhang, H., Jin, M., Liu, H., Wang, J., Kim, M.J., Yang, D., Xie, Z., Liu, J., Xia, Y., ACS Nano 5, 8212 (2011).CrossRefGoogle Scholar
Feynman, R.P., Eng. Sci. 23, 22 (1960).Google Scholar