Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-27T10:42:04.510Z Has data issue: false hasContentIssue false

Shifting identities of metal oxide nanoparticles: Focus on inflammation

Published online by Cambridge University Press:  13 November 2014

Kunal Bhattacharya
Affiliation:
Nanosafety and Nanomedicine Laboratory, Institute of Environmental Medicine, Karolinska Institutet, Sweden; kunal.bhattacharya@ki.se
Lucian Farcal
Affiliation:
Nanosafety and Nanomedicine Laboratory, Institute of Environmental Medicine, Karolinska Institutet, Sweden; lucian.farcal@ki.se
Bengt Fadeel
Affiliation:
Nanosafety and Nanomedicine Laboratory, Institute of Environmental Medicine, Karolinska Institutet, Sweden; bengt.fadeel@ki.se
Get access

Abstract

Metal and metal oxide nanoparticles are an important class of materials with numerous applications. Understanding how such nanoparticles interact with living systems is of considerable relevance both from a toxicological and biomedical perspective. The physicochemical features of nanoparticles are sometimes referred to as the synthetic identity, while the acquired properties of nanoparticles in a biological milieu resulting from the adsorption of biomolecules on the surface of the particles can be considered the biological identity. In this article, we explore the dynamic changes in the identity of nanoparticles resulting either from acquisition of a so-called bio-corona or through the process of biotransformation and how this impacts cellular recognition of nanoparticles and toxicological outcomes, with an emphasis on inflammation—an orchestrated host response against harmful stimuli, including pathogens as well as particles.

Type
Research Article
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Auffan, M., Rose, J., Bottero, J.Y., Lowry, G.V., Jolivet, J.P., Wiesner, M.R., Nat. Nanotechnol. 4 (10), 634 (2009).CrossRefGoogle Scholar
Bleeker, E.A., de Jong, W.H., Geertsma, R.E., Groenewold, M., Heugens, E.H., Koers-Jacquemijns, M., van de Meent, D., Popma, J.R., Rietveld, A.G., Wijnhoven, S.W., Cassee, F.R., Oomen, A.G., Regul. Toxicol. Pharmacol. 65 (1), 119 (2013).Google Scholar
Feliu, N., Fadeel, B., Nanoscale 2 (12), 2514 (2010).CrossRefGoogle Scholar
Setyawati, M.I., Tay, C.Y., Chia, S.L., Goh, S.L., Fang, W., Neo, M.J., Chong, H.C., Tan, S.M., Loo, S.C., Ng, K.W., Xie, J.P., Ong, C.N., Tan, N.S., Leong, D.T., Nat. Commun. 4, 1673 (2013).Google Scholar
Geiser, M., Kreyling, W.G., Part. Fibre Toxicol. 7, 2 (2010).Google Scholar
Kreyling, W.G., Semmler-Behnke, M., Takenaka, S., Möller, W., Acc. Chem. Res. 46 (3), 714 (2013).Google Scholar
Bhattacharya, K., Andón, F.T., El-Sayed, R., Fadeel, B., Adv. Drug Deliv. Rev. 65 (15), 2087 (2013).Google Scholar
Medzhitov, R., Nature 454, 428 (2008).Google Scholar
Fadeel, B., Feliu, N., Vogt, C., Abdelmonem, A.M., Parak, W.J., Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 5, 111 (2013).Google Scholar
Walczyk, D., Bombelli, F.B., Monopoli, M.P., Lynch, I., Dawson, K.A., J. Am. Chem. Soc. 132, 5761 (2010).Google Scholar
Monopoli, M.P., Åberg, C., Salvati, A., Dawson, K.A., Nat. Nanotechnol. 7, 779 (2012).CrossRefGoogle Scholar
Lundqvist, M., Stigler, J., Cedervall, T., Berggård, T., Flanagan, M.B., Lynch, I., Elia, G., Dawson, K., ACS Nano 5, 7503 (2011).CrossRefGoogle Scholar
Bertoli, F., Davies, G.L., Monopoli, M.P., Moloney, M., Gunko, Y.K., Salvati, A., Dawson, K.A., Small 10 (16), 3307 (2014).Google Scholar
Albanese, A., Walkey, C.D., Olsen, J.B., Guo, H., Emili, A., Chan, W.C., ACS Nano 8, 5515 (2014).Google Scholar
Lunov, O., Syrovets, T., Loos, C., Beil, J., Delacher, M., Tron, K., Nienhaus, G.U., Musyanovych, A., Mailänder, V., Landfester, K., Simmet, T., ACS Nano 5 (3), 1657 (2011).Google Scholar
Lesniak, A., Fenaroli, F., Monopoli, M.P., Åberg, C., Dawson, K.A., Salvati, A., ACS Nano 6, 5845 (2012).Google Scholar
Kapralov, A.A., Feng, W.H., Amoscato, A.A., Yanamala, N., Balasubramanian, K., Winnica, D.E., Kisin, E.R., Kotchey, G.P., Gou, P., Sparvero, L.J., Ray, P., Mallampalli, R.K., Klein-Seetharaman, J., Fadeel, B., Star, A., Shvedova, A.A., Kagan, V.E., ACS Nano 6, 4147 (2012).Google Scholar
Ehrenberg, M.S., Friedman, A.E., Finkelstein, J.N., Oberdörster, G., McGrath, J.L., Biomaterials 30, 603 (2009).CrossRefGoogle Scholar
Caracciolo, G., Cardarelli, F., Pozzi, D., Salomone, F., Maccari, G., Bardi, G., Capriotti, A.L., Cavaliere, C., Papi, M., Laganà, A., ACS Appl. Mater. Interfaces 5, 13171 (2013).Google Scholar
Walkey, C.D., Olsen, J.B., Song, F., Liu, R., Guo, H., Olsen, D.W., Cohen, Y., Emili, A., Chan, W.C., ACS Nano 8 (3), 2439 (2014).Google Scholar
Dutta, D., Sundaram, S.K., Teeguarden, J.G., Riley, B.J., Fifield, L.S., Jacobs, J.M., Addleman, S.R., Kaysen, G.A., Moudgil, B.M., Weber, T.J., Toxicol. Sci. 100 (1), 303 (2007).Google Scholar
Tenzer, S., Docter, D., Kuharev, J., Musyanovych, A., Fetz, V., Hecht, R., Schlenk, F., Fischer, D., Kiouptsi, K., Reinhardt, C., Landfester, K., Schild, H., Maskos, M., Knauer, S.K., Stauber, R.H., Nat. Nanotechnol. 8 (10), 772 (2013).Google Scholar
Shi, J., Karlsson, H.L., Johansson, K., Gogvadze, V., Xiao, L., Li, J., Burks, T., Garcia-Bennett, A., Uheida, A., Muhammed, M., Mathur, S., Morgenstern, R., Kagan, V.E., Fadeel, B., ACS Nano 6 (3), 1925 (2012).Google Scholar
Cho, W.S., Duffin, R., Thielbeer, F., Bradley, M., Megson, I.L., MacNee, W., Poland, C.A., Tran, C.L., Donaldson, K., Toxicol. Sci. 126 (2), 469 (2012).Google Scholar
Wang, F., Yu, L., Monopoli, M.P., Sandin, P., Mahon, E., Salvati, A., Dawson, K.A., Nanomedicine 9 (8), 1159 (2013).Google Scholar
Andón, F.T., Fadeel, B., Acc. Chem. Res. 46 (3), 733 (2013).Google Scholar
Karlsson, H.L., Toprak, M.S., Fadeel, B., in Handbook on the Toxicology of Metals, Nordberg, G., Fowler, B., Nordberg, M., Eds. (Elsevier, London, 2014), chap. 4, pp. 75108.Google Scholar
Cho, W.S., Duffin, R., Poland, C.A., Howie, S.E., MacNee, W., Bradley, M., Megson, I.L., Donaldson, K., Environ. Health Perspect. 118 (12), 1699 (2010).Google Scholar
Cho, W.S., Duffin, R., Bradley, M., Megson, I.L., MacNee, W., Lee, J.K., Jeong, J., Donaldson, K., Part. Fibre Toxicol. 10 (1), 55 (2013).Google Scholar
Zhang, H., Ji, Z., Xia, T., Meng, H., Low-Kam, C., Liu, R., Pokhrel, S., Lin, S., Wang, X., Liao, Y.P., Wang, M., Li, L., Rallo, R., Damoiseaux, R., Telesca, D., Mädler, L., Cohen, Y., Zink, J.I., Nel, A.E., ACS Nano 6 (5), 4349 (2012).Google Scholar
Tuomela, S., Autio, R., Buerki-Thurnherr, T., Arslan, O., Kunzmann, A., Andersson-Willman, B., Wick, P., Mathur, S., Scheynius, A., Krug, H.F., Fadeel, B., Lahesmaa, R., PLoS One 8 (7), e68415 (2013).Google Scholar
Kong, L., Tuomela, S., Hahne, L., Ahlfors, H., Yli-Harja, O., Fadeel, B., Lahesmaa, R., Autio, R., PLoS One 8 (7), e68414 (2013).Google Scholar
Liu, J., Wang, Z., Liu, F.D., Kane, A.B., Hurt, R.H., ACS Nano 6 (11), 9887 (2012).Google Scholar
Wang, Z., von dem Bussche, A., Kabadi, P.K., Kane, A.B., Hurt, R.H., ACS Nano 7 (10), 8715 (2013).CrossRefGoogle Scholar
Stark, W.J., Angew. Chem. Int. Ed. Engl. 50 (6), 1242 (2011).Google Scholar
Gliga, A.R., Skoglund, S., Odnevall Wallinder, I., Fadeel, B., Karlsson, H.L., Part. Fibre Toxicol. 11, 11 (2014).Google Scholar
Xia, T., Kovochich, M., Liong, M., Mädler, L., Gilbert, B., Shi, H., Yeh, J.I., Zink, J.I., Nel, A.E., ACS Nano 2 (10), 2121 (2008).Google Scholar
George, S., Pokhrel, S., Xia, T., Gilbert, B., Ji, Z., Schowalter, M., Rosenauer, A., Damoiseaux, R., Bradley, K.A., Mädler, L., Nel, A.E.. ACS Nano 4 (1), 15 (2010).Google Scholar
Xia, T., Zhao, Y., Sager, T., George, S., Pokhrel, S., Li, N., Schoenfeld, D., Meng, H., Lin, S., Wang, X., Wang, M., Ji, Z., Zink, J.I., Mädler, L., Castranova, V., Lin, S., Nel, A.E., ACS Nano 5 (2), 1223 (2011).CrossRefGoogle Scholar
Buerki-Thurnherr, T., Xiao, L., Diener, L., Arslan, O., Hirsch, C., Maeder-Althaus, X., Grieder, K., Wampfler, B., Mathur, S., Wick, P., Krug, H.F., Nanotoxicology 7 (4), 402 (2013).CrossRefGoogle Scholar
Li, R., Ji, Z., Chang, C.H., Dunphy, D.R., Cai, X., Meng, H., Zhang, H., Sun, B., Wang, X., Dong, J., Lin, S., Wang, M., Liao, Y.P., Brinker, C.J., Nel, A., Xia, T., ACS Nano 8 (2), 1771 (2014).Google Scholar
Kotchey, G.P., Hasan, S.A., Kapralov, A.A., Ha, S.H., Kim, K., Shvedova, A.A., Kagan, V.E., Star, A., Acc. Chem. Res. 45 (10), 1770 (2012).CrossRefGoogle Scholar
Andon, F.T., Fadeel, B., in Nano-Oncologicals: New Targeting and Delivery Approaches, Alonso, M.J., Garcia-Fuentes, M., Eds. (Springer, New York, 2014), chap. 14.Google Scholar
Lynch, I., Ahluwalia, A., Boraschi, D., Byrne, H.J., Fadeel, B., Gehr, P., Gutleb, A.C., Kendall, M., Papadopoulos, M.G., BioNanoMaterials. 14 (34), 195 (2013).Google Scholar
Pearson, R.M., Hsu, H.-J., Bugno, J., Hong, S., MRS Bull. 39, 227 (2014).Google Scholar