Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-28T05:29:10.076Z Has data issue: false hasContentIssue false

Sputter-deposited magneto-optical garnet for all-mode (transverse electric/transverse magnetic) Faraday rotators

Published online by Cambridge University Press:  11 June 2018

Bethanie J.H. Stadler
Affiliation:
University of Minnesota, USA; stadler@umn.edu
David C. Hutchings
Affiliation:
University of Glasgow, Scotland; david.hutchings@glasgow.ac.uk
Get access

Abstract

Faraday rotators in optical isolators, typically composed of iron garnets, are photonic analogues of electrical diodes in that they do not allow reciprocal transmission of light. Isolators are especially important for blocking back-reflected light from reaching source lasers, as such feedback gives rise to unwanted noise and instabilities. In commonly implemented photonic integrated circuits (PICs), isolation is the only critical function that cannot yet be achieved by direct integration. While several techniques have been explored for integrating high-gyrotropy garnets into silicon-on-insulator PICs, this article focuses on sputter deposition, which is the most up-scalable process. High-gyrotropy Ce-doped yttrium iron garnet on nongarnet substrates can be made by sputter deposition with the use of garnet seed layers. Because these seed layers can compromise device performance, seed layer-free terbium iron garnet (TIG) has also recently been developed. Careful doping of TIG can produce Faraday rotations with opposite chiralities, which enable new device designs. Most optical isolator designs involve two-dimensional transverse magnetic-mode structures, such as interferometers or ring resonators, which employ nonreciprocal phase shift. One-dimensional Faraday rotation waveguides with quasi-phase matching have been shown to enable direct integration of isolators for all modes, including the transverse electric mode of lasers currently available for fully integrated PICs.

Type
Materials for Nonreciprocal Photonics
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Stadler, B.J.H., Mizumoto, T., IEEE Photonics J. 6, 0600215 (2014).CrossRefGoogle Scholar
Zhang, C., Dulal, P., Stadler, B.J.H., Hutchings, D.C., Sci. Rep. 7 (5820), 1 (2017).Google Scholar
Shoji, Y., Shirato, Y., Mizumoto, T., Jpn. J. Appl. Phys. 53, 022202 (2014).CrossRefGoogle Scholar
Ghosh, S., Keyvaninia, S., Shoji, Y., Van Roy, W., Mizumoto, T., Roelkens, G., and Baets, R.G., IEEE Photonics Technol. Lett. 24, 1653 (2012).CrossRefGoogle Scholar
Bi, L., Hu, J., Jiang, P., Kim, D.H., Dionne, G.F., Kimerling, L.C., Ross, C.A., Nat. Photonics 5, 758 (2011).CrossRefGoogle Scholar
Tien, M.-C., Mizumoto, T., Pintus, P., Kromer, H., Bowers, J.E., Opt. Express 19, 11740 (2011).CrossRefGoogle Scholar
Pintus, P., Di Pasquale, F., Bowers, J.E., Opt. Lett. 36, 4599 (2011).CrossRefGoogle Scholar
Shimizu, H., Nakano, Y., J. Lightwave Technol. 24, 38 (2006).CrossRefGoogle Scholar
Hutchings, D.C., Holmes, B.M., IEEE Photonics J. 3, 450 (2011).CrossRefGoogle Scholar
Hutchings, D.C., J. Phys. D Appl. Phys. 36, 2222 (2003).CrossRefGoogle Scholar
Tien, P.K., Martin, R.J., Wolfe, R., Craw, R.C.L., Blank, S.L., Appl. Phys. Lett. 21, 394 (1972).CrossRefGoogle Scholar
Cruz-Rivera, L.J., Sung, S.-Y., Cassada, J., Marrero-Cruz, M.R., Stadler, B.J.H., Mater. Res. Soc. Symp. Proc. 722, Wehrspohn, R.B., März, R., Noda, S., Soukoulis, C., Eds. (Materials Research Society, Warrendale, PA, 2002), p. 262.Google Scholar
Abe, M., Gomi, M., J. Magn. Magn. Mater. 84, 222 (1990).CrossRefGoogle Scholar
Sung, S.-Y., Qi, X., Stadler, B.J.H., Appl. Phys. Lett. 87, 121111 (2005).CrossRefGoogle Scholar
Sung, S.-Y., Sharma, A., Block, A., Keuhn, K., Stadler, B.J.H., J. Appl. Phys. 109, 07B738 (2011).CrossRefGoogle Scholar
Dulal, P., Block, A.D., Gage, T.E., Haldren, H.A., Sung, S.-Y., Hutchings, D.C., Stadler, B.J.H., ACS Photonics 3, 1818 (2016).CrossRefGoogle Scholar
Shoji, Y., Mizumoto, T., Yokoi, H., Hsieh, I.W., Osgood, R.M., Appl. Phys. Lett. 92, 071117 (2008).CrossRefGoogle Scholar
Block, A.D., Dulal, P., Stadler, B.J.H., Seaton, N.C., IEEE Photonics J. 6, 0600308 (2014).CrossRefGoogle Scholar
Gage, T.E., Dulal, P., Solheid, P.A., Flannigan, D.J., Stadler, B.J.H., Mater. Res. Lett. 5 (6), 379 (2017).CrossRefGoogle Scholar
Dulal, P., Gage, T.E., Block, A.D., Cofell, E., Hutchings, D.C., Stadler, B.J.H., 2016 IEEE Photonics Conference (2016), p. 773.CrossRefGoogle Scholar
Sun, X.Y., Du, Q., Goto, T., Onbasli, M.C., Kim, D.H., Aimon, N.M., Hu, J., Ross, C.A., ACS Photonics 2, 856 (2015).CrossRefGoogle Scholar
Hutchings, D.C., Holmes, B.M., Zhang, C., Dulal, P., Block, A.D., Sung, S.-Y., Seaton, N.C.A., Stadler, B.J.H., IEEE Photonics J. 5, 6602512 (2013).CrossRefGoogle Scholar