Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-14T19:01:43.923Z Has data issue: false hasContentIssue false

Stabilizing the surface of lithium metal

Published online by Cambridge University Press:  09 May 2014

J.T. Vaughey
Affiliation:
Argonne National Laboratory, IL, USA; vaughey@anl.gov
Gao Liu
Affiliation:
Lawrence Berkeley National Laboratory, CA, USA; gliu@lbl.gov
Ji-Guang Zhang
Affiliation:
Pacific Northwest National Laboratory, WA, USA; jiguang.zhang@pnnl.gov
Get access

Abstract

The success of high capacity energy storage systems based on lithium (Li) batteries relies on the realization of the promise of Li-metal anodes. Li metal has many advantageous properties, including an extremely high theoretical specific capacity (3860 mAh g–1), the lowest electrochemical potential (–3.040 V versus standard hydrogen electrode), and low density (0.59 g cm–3), which, all together, make it a very desirable electrode for energy storage devices. However, while primary Li batteries are used for numerous commercial applications, rechargeable Li-metal batteries that utilize Li-metal anodes have not been as successful. This article discusses the properties of Li metal in the absence of surface stabilization, as well as three different approaches currently under investigation for stabilizing the surface of Li metal to control its reactivity within the electrochemical environment of a Li-based battery.

Type
Research Article
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Yin, Y.X., Xin, S., Guo, Y.G., Wan, L.J., Angew. Chem. Int. Ed. Engl. 52, 13186 (2013).Google Scholar
Bresser, D., Passerini, S., Scrosati, B., Chem. Commun. 49, 10545 (2013).Google Scholar
Abouimrane, A., Dambournet, D., Chapman, K.W., Chupas, P.J., Weng, W., Amine, K., J. Am. Chem. Soc. 134, 4505 (2012).Google Scholar
Yang, C.P., Xin, S., Yin, Y.X., Ye, H., Zhang, J., Guo, Y.G., Angew. Chem. Int. Ed. Engl. 52, 8363 (2013).Google Scholar
Thotiyl, M.M.O., Freunberger, S.A., Peng, Z., Bruce, P.G., J. Am. Chem. Soc. 135, 494 (2013).CrossRefGoogle Scholar
Christensen, J., Albertus, P., Sanchez-Carrera, R.S., Lohmann, T., Kozinsky, B., Liedtke, R., Ahmed, J., Kojic, A., J. Electrochem. Soc. 159, R1 (2012).Google Scholar
Whittingham, M.S., Proc. IEEE 100, 1518 (2012).CrossRefGoogle Scholar
Aurbach, D., Cohen, Y., J. Electrochem. Soc. 143, 3525 (1996).Google Scholar
Takeuchi, K., Marschilok, A.C., Davis, S.M., Leising, R.A., Takeuchi, E., Coord. Chem. Rev. 219221, 283 (2001).Google Scholar
Aurbach, D., Weissman, I., Yamin, H., Elster, E., J. Electrochem. Soc. 145, 1421 (1998).Google Scholar
Chianelli, R.R., J. Cryst. Growth 34, 239 (1976).Google Scholar
Xu, W., Wang, J., Ding, F., Chen, X., Nasybulin, E., Zhang, Y., Zhang, J.-G., Energy Environ. Sci. 7, 513 (2014).Google Scholar
Aurbach, D., J. Power Sources 89, 206 (2000).Google Scholar
Zinigrad, E., Levi, E., Teller, H., Salitra, G., Aurbach, D., Dan, P., J. Electrochem. Soc. 151, A111 (2004).Google Scholar
Wu, M., Wen, Z., Liu, Y., Wang, X., Huang, L., J. Power Sources 196, 8091 (2011).CrossRefGoogle Scholar
Ishikawa, M., Machino, S., Morita, M., Electrochemistry 67, 1200 (1999).Google Scholar
López, C.M., Vaughey, J.T., Dees, D.W., J. Electrochem. Soc. 156, A726 (2009).Google Scholar
Rendek, L.J., Chottiner, G.S., Scherson, D.A., J. Electrochem. Soc. 149, E408 (2002).Google Scholar
Rendek, L.J., Chottiner, G.S., Scherson, D.A., J. Electrochem. Soc. 150, A326 (2003).Google Scholar
Rendek, L.J., Chottiner, G.S., Scherson, D.A., Electrochem. Solid State Lett. 5, A77 (2002).Google Scholar
Li, L.F., Totir, D.A., Gofer, Y., Wang, K., Chottiner, G.S., Scherson, D.A., J. Electrochem. Soc. 146, 2616 (1999).Google Scholar
Hirai, T., Yoshimatsu, I., Yamaki, J., J. Electrochem. Soc. 141, 611 (1994).CrossRefGoogle Scholar
Schmid, M.J., Bickel, K.R., Novak, P., Schuster, R., Angew. Chem. Int. Ed. Engl. 52, 13233 (2013).Google Scholar
López, C.M., Vaughey, J.T., Dees, D.W., J. Electrochem. Soc. 159, A873 (2012).Google Scholar
Vorotyntsev, M.A., Levi, M.D., Schechter, A., Aurbach, D., J. Phys. Chem. B 105, 188 (2001).CrossRefGoogle Scholar
Nishikawa, K., Fukunaka, Y., Sakka, T., Ogata, Y.H., Selman, J., J. Electrochem. Soc. 154, A943 (2007).Google Scholar
Wang, Y., Nakamura, S., Ue, M., Balbuena, P.B., J. Am. Chem. Soc. 123, 11708 (2001).Google Scholar
Aurbach, D., Zinigrad, E., Teller, H., Dan, P., J. Electrochem. Soc. 147, 1274 (2000).Google Scholar
Besenhard, J.O., Gürtler, J., Komenda, P., Paxinos, A., J. Power Sources 20, 253 (1987).Google Scholar
Aurbach, D., Weissman, I., Zaban, A., Chusid, O., Electrochim. Acta 39, 51 (1994).Google Scholar
Kanamura, K., Tamura, H., Shiraishi, S., Takehara, Z.-I., J. Electroanal. Chem. 394, 49 (1995).Google Scholar
Yamaki, J.-I., Tobishima, S.-I., Hayashi, K., Keiichi, S., Nemoto, Y., Arakawa, M., J. Power Sources 74, 219 (1998).Google Scholar
Shiraishi, S., Kanamura, K., Takehara, Z.-I., J. Electrochem. Soc. 146, 1633 (1999).Google Scholar
Ota, H., Wang, X., Yasukawa, E., J. Electrochem. Soc. 151, A427 (2004).Google Scholar
Gireaud, L., Grugeon, S., Laruelle, S., Yrieix, B., Tarascon, J.M., Electrochem. Commun. 8, 1639 (2006).Google Scholar
Yoon, H., Howlett, P.C., Best, A.S., Forsyth, M., MacFarlane, D.R., J. Electrochem. Soc. 160, A1629 (2013).Google Scholar
Stark, J.K., Ding, Y., Kohl, P.A., J. Electrochem. Soc. 158, A1100 (2011).Google Scholar
Aurbach, D., Youngman, O., Gofer, Y., Meitav, A., Electrochim. Acta 35, 625 (1990).Google Scholar
Aurbach, D., Youngman, O., Dan, P., Electrochim. Acta 35, 639 (1990).Google Scholar
Naoi, K., Mori, M., Naruoka, Y., Lamanna, W.M., Atanasoski, R., J. Electrochem. Soc. 146, 462 (1999).Google Scholar
Yang, L., Smith, C., Patrissi, C., Schumacher, C.R., Lucht, B.L., J. Power Sources 185, 1359 (2008).Google Scholar
Fujieda, T., Yamamoto, N., Saito, K., Ishibashi, T., Honjo, M., Koike, S., Wakabayashi, N., Higuchi, S., J. Power Sources 52, 197 (1994).Google Scholar
Osaka, T., Momma, T., Matsumoto, Y., Uchida, Y., J. Electrochem. Soc. 144, 1709 (1997).Google Scholar
Ota, H., Shima, K., Ue, M., Yamaki, J.-I., Electrochim. Acta 49, 565 (2004).CrossRefGoogle Scholar
Lee, Y.M., Seo, J.E., Lee, Y.-G., Lee, S.H., Cho, K.Y., Park, J.-K., Electrochem. Solid State Lett. 10, A216 (2007).Google Scholar
Yoon, S., Lee, J., Kim, S.-O., Sohn, H.-J., Electrochim. Acta 53, 2501 (2008).Google Scholar
Liebenow, C., Luhder, K., J. Appl. Electrochem. 26, 689 (1996).Google Scholar
Christensen, J., Newman, J., J. Electrochem. Soc. 151, A1977 (2004).Google Scholar
Bhattacharyya, R., Key, B., Chen, H., Best, A.S., Hollenkamp, A.F., Grey, C.P., Nat. Mater. 9, 504 (2010).Google Scholar
Marchionni, F., Star, K., Menke, E., Buffeteau, T., Servant, L., Dunn, B., Wudl, F., Langmuir 23, 11597 (2007).Google Scholar
Thompson, R.S., Schroeder, D.J., López, C.M., Neuhold, S., Vaughey, J.T., Electrochem. Commun. 13, 1369 (2011).CrossRefGoogle Scholar
Neuhold, S., Schroeder, D.J., Vaughey, J.T.J. Power Sources 206, 295 (2012).Google Scholar
Umeda, G.A., Menke, E., Richard, M., Stamm, K.L., Wudl, F., Dunn, B., J. Mater. Chem. 21, 1593 (2010).Google Scholar
Fei, D., Xinguo, H., Yuwen, L., Journal of Wuhan University of Technology-Mater. Sci. Ed. 22, 494 (2007).Google Scholar
Key, B., Schroeder, D.J., Ingram, B.J., Vaughey, J.T., Chem. Mater. 24, 287 (2012).Google Scholar
Hubaud, A.A., Schroeder, D.J., Key, B., Ingram, B.J., Dogan, F., Vaughey, J.T., J. Mater. Chem. A 1, 8813 (2013).Google Scholar
Ding, F., Xu, W., Graff, G.L., Zhang, J., Sushko, M., Chen, X., Shao, Y., Engelhard, M.H., Nie, Z., Xiao, J., Liu, X., Sushko, P.V., Liu, J., Zhang, J.-G., J. Am. Chem. Soc. 135, 4450 (2013).Google Scholar
Jarvis, C.R., Lain, M.J., Gao, Y., Yakovleva, M., J. Power Sources 146, 331 (2005).Google Scholar
Jarvis, C.R., Lain, M.J., Yakovleva, M.V., Gao, Y., J. Power Sources 162, 800 (2006).Google Scholar
Xiang, B., Wang, L., Liu, G., Minor, A.M., J. Electrochem. Soc. 160, A415 (2013).Google Scholar
Li, Y., Fitch, B., Electrochem. Commun. 13, 664 (2011).Google Scholar
Wang, L., Fu, Y., Battaglia, V.S., Liu, G., RSC Adv. 3, 15022 (2013).Google Scholar
Wang, Z., Fu, Y., Zhang, Z., Yuan, S., Amine, K., Battaglia, V.S., Liu, G., J. Power Sources 260, 57 (2014).Google Scholar
Wachtler, M., Besenhard, J.O., Winter, M., J. Power Sources 94, 189 (2001).Google Scholar
Forney, M.W., Ganter, M.J., Staub, J.W., Ridgley, R.D., Landi, B.J., Nano Lett. 13, 4158 (2013).Google Scholar