Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-14T19:24:40.078Z Has data issue: false hasContentIssue false

STEM-EELS imaging of complex oxides and interfaces

Published online by Cambridge University Press:  13 January 2012

Maria Varela
Affiliation:
Oak Ridge National Laboratory; mvarela@ornl.gov
Jaume Gazquez
Affiliation:
Institute of Materials Science of Barcelona; jgazquez@icmab.es
Stephen J. Pennycook
Affiliation:
Oak Ridge National Laboratory; pennycooksj@ornl.gov
Get access

Abstract

The success of the correction of spherical aberration in the electron microscope has revolutionized our view of oxides. This is a very important class of materials that is promising for future applications of some of the most intriguing phenomena in condensed matter physics: colossal magnetoresistance, colossal ionic conductivity, high Tc superconductivity, and ferroelectricity. Understanding the physics underlying such phenomena, especially in low dimensional systems (thin films, interfaces, nanowires, nanoparticles), relies on the availability of techniques capable of looking at these systems in real space and with atomic resolution and even beyond, with single atom sensitivity; in many cases, the system properties depend on minuscule amounts of point defects that alter the material’s properties dramatically. Atomic resolution spectroscopy in the aberration-corrected electron microscope is one of the most powerful techniques available to materials scientists today. This article will briefly review some state-of-the-art applications to oxide materials: from atomic resolution elemental mapping and single atom imaging to applications to real systems, including oxide interfaces and mapping of physical properties such as the spin state of magnetic atoms.

Type
Research Article
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Browning, N.D., Chisholm, M.F., Pennycook, S.J., Nature 366, 143 (1993).CrossRefGoogle Scholar
2.Batson, P.E., Dellby, N., Krivanek, O.L., Nature 418, 617 (2002).CrossRefGoogle Scholar
3.Jia, C.L., Lentzen, M., Urban, K., Science 299, 870 (2003).CrossRefGoogle Scholar
4.Nellist, P.D., Chisholm, M.F., Dellby, N., Krivanek, O.L., Murfitt, M.F., Szilagyi, Z.S., Lupini, A.R., Borisevich, A.Y., Sides, W.H., Pennycook, S.J., Science 305, 1741 (2004).CrossRefGoogle Scholar
5.Varela, M., Lupini, A.R., van Benthem, K., Borisevich, A.Y., Chisholm, M.F., Shibata, N., Abe, E., Pennycook, S.J., Annu. Rev. Mater. Res. 35, 539 (2005).CrossRefGoogle Scholar
6.Bosman, M., Keast, V.J., Garcia-Muñoz, J.L., D’Alfonso, A.J., Findlay, S.D., Allen, L.J., Phys. Rev. Lett. 99, 086102 (2007).Google Scholar
7.Kimoto, K., Asaka, T., Nagai, T., Saito, M., Matsui, Y., Ishizuka, K., Nature 450, 702 (2007).CrossRefGoogle Scholar
8.Muller, D.A., Fitting-Kourkoutis, L., Murfitt, M., Song, J.H., Hwang, H.Y., Silcox, J., Dellby, N., Krivanek, O.L., Science 319, 1073 (2008).Google Scholar
9.Sefrioui, Z., Visani, C., Calderon, M.J., March, K., Carretero, C., Walls, M., Rivera-Calzada, A., Leon, C., Lopez Anton, R., Charlton, T.R., Cuellar, F.A., Iborra, E., Ott, F., Imhoff, D., Brey, L., Bibes, M., Santamaria, J., Barthelemy, A., Adv. Mater. 22, 5029 (2010).Google Scholar
10.Lazar, S., Etheridge, J., Dwyer, C., Freitag, B., Botton, G.A., Acta Cryst. A67, 487 (2011).Google Scholar
11.Varela, M., Lupini, A., Christen, H.M., Dellby, N., Krivanek, O.L., Nellist, P.D., Pennycook, S.J., Phys. Rev. Lett. 92, 095502 (2004).CrossRefGoogle Scholar
12.Pennycook, S.J., Nellist, P.D., Scanning Transmission Electron Microscopy: Imaging and Analysis (Springer, New York, 2011).CrossRefGoogle Scholar
13.Pennycook, S.J., Varela, M., J. Electron Microsc. 60, S213 (2011).Google Scholar
14.Jeanguillaume, C., Colliex, C., Ultramicroscopy 28, 252 (1989).CrossRefGoogle Scholar
15.Hunt, J.A., Williams, D.B., Ultramicroscopy 38, 47 (1991).Google Scholar
16.Visani, C., Tornos, J., Nemes, N.M., Rocci, M., Leon, C., Santamaria, J., te Velthuis, S.G.E., Liu, Y., Hoffmann, A., Freeland, J.W., Garcia-Hernandez, M., Fitzsimmons, M.R., Kirby, B.J., Varela, M., Pennycook, S.J., Phys. Rev. B 84, 060405(R) (2011).CrossRefGoogle Scholar
17.Vasko, V.A., Larkin, V.A., Graus, P.A., Nikolaev, K.R., Grupp, D.E., Nordman, C.A., Goldman, A.M., Phys. Rev. Lett. 78, 1134 (1997).CrossRefGoogle Scholar
18.Sefrioui, Z., Varela, M., Arias, D., Peña, V., León, C., Santamaria, J.Villegas, J.E., Martinez, J.L., Saldarriaga, W., Prieto, P., Appl. Phys. Lett. 81, 4568 (2002).Google Scholar
19.Varela, M., Lupini, A.R., Pennycook, S.J., Sefrioui, Z., Santamaria, J., Solid State Electron. 47, 2245 (2003).CrossRefGoogle Scholar
20.Varela, M., Lupini, A.R., Peña, V., Sefrioui, Z., Arslan, I., Browning, N.D., Santamaria, J., Pennycook, S.J., Condens. Matter (2005), (available at http://arxiv.org/abs/cond-mat/0508564).Google Scholar
21.Chakalian, J., Freeland, J.W., Srajer, G., Strempfer, J., Khaullin, G., Cezar, J.C., Charlton, T., Dagliesh, R., Bernhard, C., Cristiani, G., Habermeier, H.-U., Keimer, B., Nat. Phys. 2, 244 (2006).CrossRefGoogle Scholar
22.Gonzalez, I., Okamoto, S., Yunoki, S., Moreo, A., Dagotto, E., J. Phys. Condens. Matter 20, 264002 (2008).CrossRefGoogle Scholar
23.Egerton, R.F., Electron Energy Loss in the Electron Microscope (Plenum, New York, 1996).CrossRefGoogle Scholar
24.Garcia de Abajo, F.J., Rev. Mod. Phys. 82, 209275 (2010).CrossRefGoogle Scholar
25.Sparrow, T., Williams, B., Rao, C., Thomas, J., Chem. Phys. Lett. 108, 547 (1984).Google Scholar
26.Waddington, W.G., Rez, P., Grant, I.P., Humphreys, C.J., Phys. Rev. B 34, 1467 (1986).CrossRefGoogle Scholar
27.Brydson, R., Sauer, H., Engel, W., Thomas, J.M., Zeitler, E., Kosugi, N., Kuroda, H., J. Phys. Condens. Matter 1, 797 (1989).Google Scholar
28.Krivanek, O.L., Paterson, J.H., Ultramicroscopy 32, 313 (1990).CrossRefGoogle Scholar
29.Kurata, H., Lefevre, E., Colliex, C., Brydson, R., Phys. Rev. B 47, 13763 (1993).CrossRefGoogle Scholar
30.Kurata, H., Colliex, C., Phys. Rev. B 48, 2102 (1993).CrossRefGoogle Scholar
31.Van Aken, P., Leibscher, B., Phys. Chem. Miner. 29, 188 (2002).Google Scholar
32.Varela, M., Luo, W., Tao, J., Oxley, M.P., Watanabe, M., Lupini, A.R., Pantelides, S.T., Pennycook, S.J., Phys. Rev. B. 79, 085117 (2009).Google Scholar
33.Luo, W., Varela, M., Tao, J., Pennycook, S.J., Pantelides, S.T., Phys. Rev. B 79, 052405 (2009).Google Scholar
34.Garcia-Barriocanal, J., Bruno, F.Y., Rivera-Calzada, A., Sefrioui, Z., Nemes, N.M., Garcia-Hernández, M., Rubio-Zuazo, J., Castro, G.R., Varela, M., Pennycook, S.J., Leon, C., Santamaría, C.J., Adv. Mater. 22, 627 (2010).Google Scholar
35.Dagotto, E., Hotta, T., Moreo, A., Phys. Rep. 344, 1 (2001).CrossRefGoogle Scholar
36.Wu, J., Leighton, C., Phys. Rev. B 67, 174408 (2003).CrossRefGoogle Scholar
37.Senaris-Rodriguez, M.A., Goodenough, J.B., J. Solid State Chem. 116, 224 (1995).Google Scholar
38.Maekawa, S., Tohyama, T., Barnes, S.E., Ishihara, S., Koshibae, W., Khaliullin, G., Physics of Transition Metal Oxides (Springer, New York, 2004).CrossRefGoogle Scholar
39.Podlesnyak, A., Streule, S., Mesot, J., Medarde, M., Pomjakushina, E., Conder, K., Tanaka, A., Haverkort, M.W., Khomskii, D.I., Phys. Rev. Lett. 97, 247208 (2006).CrossRefGoogle Scholar
40.Oxley, M.P., Allen, L.J., Phys. Rev. B 57, 3273 (1998).Google Scholar
41.Allen, L.J., Findlay, S.D., Oxley, M.P., Rossouw, C.J., Ultramicroscopy 96, 47 (2003).CrossRefGoogle Scholar
42.Oxley, M.P., Varela, M., Pennycook, T.J., van Benthem, K., Findlay, S.D., D’Alfonso, A.J., Allen, L.J., Pennycook, S.J., Phys. Rev. B 76, 064303 (2007).CrossRefGoogle Scholar
43.Oxley, M.P., Chang, H.J., Borisevich, A.Y., Varela, M., Pennycook, S.J., Microsc. Microanal. 16, 92 (2010).CrossRefGoogle Scholar
44.Jia, C.L., Urban, K., Science 303, 2001 (2004).Google Scholar
45.Shibata, N., Chisholm, M.F., Nakamura, A., Pennycook, S.J., Yamamoto, T., Ikuhara, Y., Science 316, 82 (2007).CrossRefGoogle Scholar
46.Findlay, S.D., Shibata, N., Sawada, H., Okunishi, E., Kondo, Y., Yamamoto, T., Ikuhara, Y., Appl. Phys. Lett. 95, 191913 (2009).CrossRefGoogle Scholar
47.Rodriguez-Carvajal, J., Hennion, M., Moussa, F., Moudden, A.H., Pinsard, L., Revcolevschi, A., Phys. Rev. B 57, R3189 (1998).Google Scholar
48.Ostanin, S., Craven, A.J., McComb, D.W., Vlachos, D., Alavi, A., Finnis, M.W.Paxton, A.T., Phys. Rev. B 62, 14728 (2000).CrossRefGoogle Scholar
49.Steele, B.C.H., Heinzel, A., Nature 414, 345 (2001).CrossRefGoogle Scholar
50.Ormerod, R.M., Chem. Soc. Rev. 32, 17 (2003).Google Scholar
51.Goodenough, J.B., Annu. Rev. Mater. Res. 33, 91 (2003).Google Scholar
52.Kosacki, I., Rouleau, C.M., Becher, P.F., Bentley, J., Lowndes, D.H., Solid State Ion. 176, 1319 (2000).Google Scholar
53.Kilner, J.A., Nat. Mater. 7, 838 (2008).Google Scholar
54.Cavallaro, A., Burriel, M., Roqueta, J., Apostolidis, A., Bernardi, A., Tarancón, A., Srinivasan, R., Cook, S.N., Fraser, H.L., Kilner, J.A., McComb, D.W., Santiso, J., Solid State Ion. 181, 592 (2010).Google Scholar
55.Garcia-Barriocanal, J., Rivera-Calzada, A., Varela, M., Sefrioui, Z., Iborra, E., Leon, C., Pennycook, S.J., Santamaria, J., Science 321, 676 (2008).CrossRefGoogle Scholar
56.Guo, X., Science 324, 465b (2009).Google Scholar
57.Garcia-Barriocanal, J., Rivera-Calzada, A., Varela, M., Sefrioui, Z., Iborra, E., Leon, C., Penycook, S.J., Santamaria, J., Science, 324, 465 (2009).Google Scholar
58.Pennycook, T.J., Beck, M.J., Varga, K., Varala, M., Pennycook, S.J., Pantelides, S.T., Phys. Rev. Lett. 104, 115901 (2010).CrossRefGoogle Scholar
59.Pennycook, T.J., Oxley, M.P., Garcia-Barriocanal, J., Bruno, F.Y., Leon, C., Santamaria, J., Pantelides, S.T., Varela, M., Pennycook, S.J., Eur. Phys. J. Appl. Phys. 54, 33507 (2011).CrossRefGoogle Scholar
60.Schattschneider, P., Rubino, S., Hébert, C., Rusz, J., Kuneš, J., Novák, P., Carlino, E., Fabrizioli, M., Panaccione, G., Rossi, G., Nature 441, 486 (2006).CrossRefGoogle Scholar
61.Klie, R.F., Zheng, J.C., Zhu, Y., Varela, M., Wu, J., Leighton, C., Phys. Rev. Lett. 99, 047203 (2007).CrossRefGoogle Scholar
62.Schattschneider, P., Ennen, I., Löffler, S., Stöger-Pollach, M., Verbeeck, J., J. Appl. Phys. 107, 09D311 (2010).Google Scholar
63.Verbeeck, J., Tian, H., Schattschneider, P., Nature 467, 301 (2010).CrossRefGoogle Scholar
64.Torija, M.A., Sharma, M., Fitzsimmons, M.R., Varela, M., Leighton, C., J. Appl. Phys. 104, 023901 (2008).CrossRefGoogle Scholar
65.Torija, M.A., Sharma, M., Gazquez, J., Varela, M., He, C., Borchers, J.A., Laver, M., El-Khatib, S., Leighton, C., Adv. Mater. 23, 2711 (2011).CrossRefGoogle Scholar
66.Wang, Z.L., Yin, J.S., Philos. Mag. B 77, 49 (1998)Google Scholar
67.Wang, Z.L., Yin, J.S., Jiang, Y.D., Micron 31, 571 (2000).CrossRefGoogle Scholar
68.Ito, Y., Klie, R.F., Browning, N.D., Mazanec, T.J., J. Am. Ceram. Soc. 85, 969 (2002).Google Scholar
69.Klenov, D.O., Donner, W., Foran, B., Stemmer, S., Appl. Phys. Lett. 82, 3427 (2003).Google Scholar
70.Gazquez, J., Luo, W., Oxley, M.P., Prange, M., Torija, M.A., Sharma, M., Leighton, C., Pantelides, S.T., Pennycook, S.J., Varela, M., Nanoletters 11, 973 (2011).Google Scholar