Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-27T07:55:09.343Z Has data issue: false hasContentIssue false

Step and Kink Dynamics in Inorganic and Protein Crystallization

Published online by Cambridge University Press:  31 January 2011

Get access

Abstract

Revived interest in crystal growth from solutions is driven by a variety of demands, including the need to develop an understanding of biomineralization processes in bones, teeth, and shells;and efforts to characterize large optically nonlinear crystals, perfect crystals of proteins, nucleic acids, and complexes such as viruses. Producing and purifying drugs, food, paint, fertilizers, and other polycrystalline materials in industry are other expanding areas that rely on crystal growth from solution. These general practical incentives have activated in-depth studies that revealed new phenomena and raised new fundamental questions: Are thermal fluctuations of steps on a crystal face always fast enough to assure the step propagation at the rate controlled just by molecular incorporation at kinks? Is the Gibbs–Thomson capillarity shift of thermodynamic equilibrium always applicable to evaluate the crystallization driving force of polygonized steps? Is it possible to eliminate the step bunching on a growing crystal face that compromises crystal homogeneity, or at least to mitigate it? In this overview, we will discuss experimental findings and provide state-of-the-art answers to these questions.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Chernov, A.A., Modern Crystallography III: Crystal Growth (Springer, Berlin, 1984).Google Scholar
2Burton, W.K., Cabrera, N., and Frank, F.C., Phil. Trans. Roy. Soc. London Ser. A 243 (1951) p. 299.Google Scholar
3Frenkel, J., Phys. J.USSR 1 (1932) p.498.Google Scholar
4Voronkov, V.V., Sov. Phys. Crystallogr. 15 (1970) p.8.Google Scholar
5Voronkov, V.V., Sov. Phys. Crystallogr. 18 (1973) p.18.Google Scholar
6Cristoffersen, J., Rostrup, E., and Cristof-fersen, M.R., J.Cryst. Growth 113 (1991) p.599.CrossRefGoogle Scholar
7Chernov, A.A., Rashkovich, L.N., Yamlinski, I.V., and Gvozdev, N.V., J. Phys.: Condens. Matter 11 (1999) p.9969.Google Scholar
8Orme, C.A., Orme, S., and Yoreo, J.J. De, unpublished.Google Scholar
9Teng, H.H., Dove, P.M., Orme, C.A., and Yoreo, J.J. De, Science 282 (1998) p.724.Google Scholar
10Higgins, S.R., Bosbach, D., Eggleston, C.M., and Knauss, K.G., J. Phys. Chem. B 104 (2000) p.6978.Google Scholar
11Chernov, A.A., Phys. Rep. 288 (1997) p.61.Google Scholar
12Matsuura, Y. and Chernov, A.A., Acta Crys-tallogr., Sect D: Biol. Crystallogr. 59 (2003) p.1347.CrossRefGoogle Scholar
13Rashkovich, L.N., Gvozdev, N.V., Sil'nikova, M.I., Yaminski, I.V., and Chernov, A.A., Cryst. Rep. 46 (2001) p.860.Google Scholar
14Sohnel, O., J. Cryst. Growth 57 (1982) p. 101.Google Scholar
15Crystoffersen, J., Rostrup, E., and Cristoffersen, M.R., J. Cryst. Growth 113 (1991) p. 599.Google Scholar
16Rashkovich, L.N., Petrova, E.V., Shuston, O.A., and Chernevich, T.G., Phys. Solid State 45 (2002) p.400.Google Scholar
17Chernov, A.A., J. Cryst. Growth 264 (2004) p.499.Google Scholar
18Voronkov, V.V., Crystals, Growth, Properties, and Applications (Springer, Berlin, 1983) p.75.Google Scholar
19Chernov, A.A., J. Mater. Sci. - Mater. Electron. 12 (2001) p. 437.CrossRefGoogle Scholar
20Bauser, E., in Handbook of Crystal Growth, Vol. 3b, edited by Hurle, D.T.J. (Elsevier, Amsterdam, 1994) p.879.Google Scholar
21Chernov, A.A., Kuznetsov, Y.G., Smol'sky, I.L., and Rozhanskii, V.N., Sov. Phys. Crys-tallogr. 31 (1986) p.705.Google Scholar
22Chernov, A.A., J. Cryst. Growth 118 (1992) p.333.Google Scholar
23Coriell, S.R., Chernov, A.A., Murray, B.T., and McFadden, G.B., J. Cryst. Growth 183 (1998) p.669.CrossRefGoogle Scholar
24Thomas, T.N., Land, T.A., Casey, W.H., and Yoreo, J.J. De, Phys. Rev. Lett. 92 216103 (2004).Google Scholar
25Bespalov, V.I., Bredikhin, V.I., Katsman, V.I., Ershov, V.P., and Lavrov, L.A., J.Cryst. Growth 82 (1987) p.776.Google Scholar
26Yoreo, J.J. De, Peck, Z.V., Zaitseva, N.P., and Woods, B.W., J. Cryst. Growth 166 (1995) p. 291.Google Scholar
27Booth, N.A., Chernov, A.A., and Vekilov, P.G., J.Cryst. Growth 237–239 (2002) p.1818.Google Scholar
28Booth, N.A., Chernov, A.A., and Vekilov, P.G., unpublished.Google Scholar
29Schlichting, H., Boundary Layer Theory, 7th ed. (McGraw-Hill, N.Y., 1979).Google Scholar
30Schlichting, H. and Gersten, K., Boundary Layer Theory, 8th ed. (Springer, Berlin, 2000).CrossRefGoogle Scholar