Hostname: page-component-78c5997874-s2hrs Total loading time: 0 Render date: 2024-11-10T16:38:05.107Z Has data issue: false hasContentIssue false

Strain generation and energy-conversion mechanisms in lead-based and lead-free piezoceramics

Published online by Cambridge University Press:  10 August 2018

Dragan Damjanovic
Affiliation:
Institute of Materials, École Polytechnique–EPFL, Switzerland; dragan.damjanovic@epfl.ch
George A. Rossetti Jr.
Affiliation:
Institute of Materials Science, University of Connecticut, USA; george.rossetti_jr@uconn.edu
Get access

Abstract

Piezoelectric ceramics generate strain through the intrinsic piezoelectric effect, the motion of ferroelectric domain walls, or through field-induced phase transitions. The enhanced piezoelectric properties observed in morphotropic solid solutions arise from several distinct, but interrelated, mechanisms associated with the near degeneration of the energy surface from cubic to spherical symmetry. The phenomenological theory of ferroelectricity is used to explain the thermodynamic origins of strain generation mechanisms in these solid solutions. The displacement of ferroelectric domain walls is an extrinsic contribution to the piezoelectric response that can be controlled by modifying the host material with small concentrations of dopants. The concept of “hardening” is introduced; hardening can be useful in applications where piezoelectric energy conversion and low energy loss are more important than large strain. The operative mechanisms of strain generation and energy conversion in technologically important lead-based and lead-free piezoelectric materials are summarized.

Type
Lead-free Piezoceramics
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Jaffe, B., Cook, W.R., Jaffe, H., Piezoelectric Ceramics (Academic Press, London, 1971).CrossRefGoogle Scholar
Newnham, R.E., Properties of Materials (Oxford University Press, New York, 2005).Google Scholar
Budimir, M., Damjanovic, D., Setter, N., Phys. Rev. B Condens. Matter 73, 174106 (2006).CrossRefGoogle Scholar
Klein, N., Hollenstein, E., Damjanovic, D., Trodahl, H.J., Setter, N., Kuball, M., J. Appl. Phys. 102, 014112 (2007).CrossRefGoogle Scholar
Saito, Y., Takao, H., Tani, T., Nonoyama, T., Takatori, K., Homma, T., Nagaya, T., Nakamura, M., Nature 432, 84 (2004).CrossRefGoogle Scholar
Liu, W., Ren, X., Phys. Rev. Lett. 103, 257602 (2009).CrossRefGoogle Scholar
Berlincourt, D., IEEE Trans. Sonics Ultrason. SU-13, 116 (1966).CrossRefGoogle Scholar
Berlincourt, D., Krueger, H.H.A., J. Appl. Phys. 30, 1804 (1959).CrossRefGoogle Scholar
Robels, U., Arlt, G., J. Appl. Phys. 73, 3454 (1993).CrossRefGoogle Scholar
Jin, Y.M., Wang, Y.U., Khachaturyan, A.G., Li, J.F., Viehland, D., Phys. Rev. Lett. 91, 197601 (2003).CrossRefGoogle Scholar
Wang, Y.L., He, Z.B., Damjanovic, D., Tagantsev, A.K., Deng, G.C., Setter, N., J. Appl. Phys. 110, 014101 (2011).CrossRefGoogle Scholar
Noheda, B., Cox, D.E., Shirane, G., Gonzalo, J.A., Cross, L.E., Park, S.-E., Appl. Phys. Lett. 74, 2059 (1999).CrossRefGoogle Scholar
Marutake, M., J. Phys. Soc. Jpn. 11, 807 (1956).CrossRefGoogle Scholar
Pramanick, A., Damjanovic, D., Daniels, J.E., Nino, J.C., Jones, J.L., J. Am. Ceram. Soc. 94, 293 (2011).CrossRefGoogle Scholar
Devonshire, A.F., Adv. Phys. 3, 85 (1954).CrossRefGoogle Scholar
Rossetti, G.A. Jr., Khachaturyan, A.G., Akcay, G., Ni, Y., J. Appl. Phys. 103, 114113 (2008).CrossRefGoogle Scholar
Benguigui, L., Solid State Commun. 11, 825 (1972).CrossRefGoogle Scholar
Heitmann, A.A., Rossetti, G.A. Jr., Philos. Mag. 90, 71 (2010).CrossRefGoogle Scholar
Carl, K., Härdtl, K.H., Phys. Status Solidi A 8, 87 (1971).CrossRefGoogle Scholar
Heitmann, A.A., Rossetti, G.A. Jr., J. Am. Ceram. Soc. 97, 1661 (2014).CrossRefGoogle Scholar
Haun, M.J., Furman, E., Jang, S.J., Cross, L.E., Ferroelectrics 99, 13 (1989).CrossRefGoogle Scholar
Wersing, W., Heywang, W., Beige, H., Thomann, H., in Piezoelectricity: Evolution and Future of a Technology (Springer-Verlag, Berlin, 2008), p. 37.CrossRefGoogle Scholar
Park, S.-E., Shrout, T.R., J. Appl. Phys. 82, 1804 (1997).CrossRefGoogle Scholar
Eremkin, V., Smotrakov, V.G., Fesenko, E.G., Ferroelectrics 110, 137 (1990).Google Scholar
Isupov, V.A., Sov. Phys. Solid State 12, 1084 (1970).Google Scholar
Ari-Gur, P., Benguigui, L., Solid State Commun. 15, 1077 (1974).CrossRefGoogle Scholar
Bellaiche, L., García, A., Vanderbilt, D., Phys. Rev. Lett. 84, 5427 (2000).CrossRefGoogle Scholar
Fu, H., Cohen, R.E., Nature 403, 281 (2000).CrossRefGoogle Scholar
Vanderbilt, D., Cohen, M.H., Phys. Rev. B Condens. Matter 63, 094108 (2001).CrossRefGoogle Scholar
Khachaturyan, A.G., Philos. Mag. 90, 37 (2010).CrossRefGoogle Scholar
Acosta, M., Novak, N., Rojas, V., Patel, S., Vaish, R., Koruza, J., Rossetti, G.A. Jr., Rödel, J., Appl. Phys. Rev. 4, 041305 (2017).CrossRefGoogle Scholar
Damjanovic, D., J. Appl. Phys. 82, 1788 (1997).CrossRefGoogle Scholar
Zheng, J., Takahashi, S., Yoshikawa, S., Uchino, K., J. Am. Ceram. Soc. 79, 3193 (1996).CrossRefGoogle Scholar
Damjanovic, D., in The Science of Hysteresis, Bertotti, G., Mayergoyz, I., Eds. (Academic Press, Oxford, 2006), vol. 3, p. 337.CrossRefGoogle Scholar
Chandrasekaran, A., Damjanovic, D., Setter, N., Marzari, N., Phys. Rev. B Condens. Matter 88, 214116 (2013).CrossRefGoogle Scholar
Carl, K., Haerdtl, K.H., Ferroelectrics 17, 473 (1978).CrossRefGoogle Scholar
Arlt, G., Neumann, H., Ferroelectrics 87, 109 (1988).CrossRefGoogle Scholar
Daniels, J.E., Härdtl, K.H., Wernicke, R., Philips Tech. Rev. 38, 73 (1978).Google Scholar
Erhart, P., Albe, K., J. Appl. Phys. 102, 084111 (2007).CrossRefGoogle Scholar
Aksel, E., Forrester, J.S., Foronda, H.M., Dittmer, R., Damjanovic, D., Jones, J.L., J. Appl. Phys. 112, 054111 (2012).CrossRefGoogle Scholar
Prasertpalichat, S., Cann, D.P., J. Mater. Sci. 51, 476 (2015).CrossRefGoogle Scholar
Ren, X.B., Nat. Mater. 3, 91 (2004).CrossRefGoogle Scholar
Zhang, L.X., Ren, X., Phys. Rev. B Condens. Matter 71, 174108 (2005).CrossRefGoogle Scholar
Jo, W., Granzow, T., Aulbach, E., Rodel, J., Damjanovic, D., J. Appl. Phys. 105, 094102 (2009).CrossRefGoogle Scholar
Lee, H.J., Ural, S.O., Chen, L., Uchino, K., Zhang, S., Jones, J.L., J. Am. Ceram. Soc. 95, 3383 (2012).CrossRefGoogle Scholar
Matsubara, M., Kikuta, K., Hirano, S., J. Appl. Phys. 97, 114105 (2005).CrossRefGoogle Scholar
Sagalowicz, L., Chu, F., Duran Martin, P., and Damjanovic, D., J. Appl. Phys, 88, 7258 (2000).CrossRefGoogle Scholar
Armiento, R., Kozinsky, B., Fornari, M., Ceder, G., Phys. Rev. B Condens. Matter 84, 014103 (2011).CrossRefGoogle Scholar