Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2025-01-04T03:32:48.889Z Has data issue: false hasContentIssue false

Stretchable bioelectronics—Current and future

Published online by Cambridge University Press:  08 December 2017

Ishan D. Joshipura
Affiliation:
Department of Chemical Engineering, North Carolina State University, USA; idjoship@ncsu.edu
Mickey Finn III
Affiliation:
Department of Nanoengineering, University of California, San Diego, USA; mifinn@eng.ucsd.edu
Siew Ting Melissa Tan
Affiliation:
School of Materials Science and Engineering, Nanyang Technological University, Singapore; mtan041@e.ntu.edu.sg
Michael D. Dickey
Affiliation:
Department of Chemical and Biomolecular Engineering, North Carolina State University, USA; michael_dickey@ncsu.edu
Darren J. Lipomi
Affiliation:
Department of Nanoengineering, University of California, San Diego, USA; dlipomi@eng.ucsd.edu
Get access

Abstract

Materials used in wearable and implantable electronic devices should match the mechanical properties of biological tissues, which are inherently soft and deformable. In comparison to conventional rigid electronics, soft bioelectronics can provide accurate and real-time monitoring of physiological signals, improve comfort, and enable altogether new modalities for sensing. This article highlights recent progress, identifies technical challenges, and offers possible solutions for the emerging field of stretchable bioelectronics. We organize the content into three topical categories: (1) biological integration of soft electronic materials, (2) materials and mechanics, and (3) soft robotics. Finally, we conclude this article with a discussion on the outlook of the field and future challenges.

Type
Research Article
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Someya, T., Bao, Z., Malliaras, G.G., Nature 540, 379 (2016).Google Scholar
Rogers, J.A., Ghaffari, R., Kim, D.-H., Eds., Stretchable Bioelectronics for Medical Devices and Systems, Microsystems and Nanosystems Series (Springer International Publishing, Cham, 2016, http://link.springer.com/10.1007/978-3-319-28694-5).Google Scholar
Lipomi, D.J., Bao, Z., MRS Bull. 42 (2), 93 (2017).Google Scholar
Marin, B.C., Root, S.E., Urbina, A.D., Aklile, E., Miller, R., Zaretski, A.V., Lipomi, D.J., ACS Omega 2, 626 (2017).Google Scholar
Lee, Y.-Y., Kang, H.-Y., Gwon, S.H., Choi, G.M., Lim, S.-M., Sun, J.-Y., Joo, Y.-C., Adv. Mater. 28, 1636 (2016).CrossRefGoogle ScholarPubMed
Kano, S., Kim, K., Fujii, M., ACS Sens. 2, 828 (2017).Google Scholar
Koch, E., Dietzel, A., Sens. Actuators Phys. 250, 138 (2016).Google Scholar
Güder, F., Ainla, A., Redston, J., Mosadegh, B., Glavan, A., Martin, T.J., Whitesides, G.M., Angew. Chem. Int. Ed. Engl. 128, 5821 (2016).Google Scholar
Chen, D., Pei, Q., Chem. Rev. (2017), doi:10.1021/acs.chemrev.7b00019.Google Scholar
Khiabani, P.S., Soeriyadi, A.H., Reece, P.J., Gooding, J.J., ACS Sens. 1, 775 (2016).CrossRefGoogle Scholar
Lee, M.E., Armani, A.M., ACS Sens. 1, 1251 (2016).Google Scholar
Gomelsky, V., “L’Oréal’s Technology Incubator: Creating the Future of Beauty,” New York Times (2017), https://www.nytimes.com/2017/03/30/fashion/craftsmanship-loreal-beauty-technology.html.Google Scholar
Kettlgruber, G., Kaltenbrunner, M., Siket, C.M., Moser, R., Graz, I.M., Schwödiauer, R., Bauer, S., J. Mater. Chem. A 1, 5505 (2013).Google Scholar
Kim, D.-H., Lu, N., Ma, R., Kim, Y.-S., Kim, R.-H., Wang, S., Wu, J., Won, S.M., Tao, H., Islam, A., Yu, K.J., Kim, T., Chowdhury, R., Ying, M., Xu, L., Li, M., Chung, H.-J., Keum, H., McCormick, M., Liu, P., Zhang, Y.-W., Omenetto, F.G., Huang, Y., Coleman, T., Rogers, J.A., Science 333, 838 (2011).Google Scholar
Minev, I.R., Musienko, P., Hirsch, A., Barraud, Q., Wenger, N., Moraud, E.M., Gandar, J., Capogrosso, M., Milekovic, T., Asboth, L., Torres, R.F., Vachicouras, N., Liu, Q., Pavlova, N., Duis, S., Larmagnac, A., Vörös, J., Micera, S., Suo, Z., Courtine, G., Lacour, S.P., Science 347, 159 (2015).Google Scholar
Kim, S.J., Cho, H.R., Cho, K.W., Qiao, S., Rhim, J.S., Soh, M., Kim, T., Choi, M.K., Choi, C., Park, I., Hwang, N.S., Hyeon, T., Choi, S.H., Lu, N., Kim, D.-H., ACS Nano 9, 2677 (2015).CrossRefGoogle Scholar
Kalantar-zadeh, K., Ha, N., Ou, J.Z., Berean, K.J., ACS Sens. 2, 468 (2017).Google Scholar
Son, D., Lee, J., Qiao, S., Ghaffari, R., Kim, J., Lee, J.E., Song, C., Kim, S.J., Lee, D.J., Jun, S.W., Yang, S., Park, M., Shin, J., Do, K., Lee, M., Kang, K., Hwang, C.S., Lu, N., Hyeon, T., Kim, D.-H., Nat. Nanotechnol. 9, 397 (2014).CrossRefGoogle Scholar
Di, J., Yao, S., Ye, Y., Cui, Z., Yu, J., Ghosh, T.K., Zhu, Y., Gu, Z., ACS Nano 9, 9407 (2015).Google Scholar
Chin, S.Y., Poh, Y.C., Kohler, A.-C., Compton, J.T., Hsu, L.L., Lau, K.M., Kim, S., Lee, B.W., Lee, F.Y., Sia, S.K., Sci. Robot. 2 (2017), doi:10.1126/scirobotics.aah6451.Google Scholar
Reineke, T.M., ACS Macro Lett. 5, 14 (2016).Google Scholar
Tee, B.C.-K., Chortos, A., Berndt, A., Nguyen, A.K., Tom, A., McGuire, A., Lin, Z.C., Tien, K., Bae, W.-G., Wang, H., Mei, P., Chou, H.-H., Cui, B., Deisseroth, K., Ng, T.N., Bao, Z., Science 350, 313 (2015).Google Scholar
Kabiri Ameri, S., Ho, R., Jang, H., Tao, L., Wang, Y., Wang, L., Schnyer, D.M., Akinwande, D., Lu, N., ACS Nano 11, 7634 (2017).Google Scholar
Kaltenbrunner, M., Sekitani, T., Reeder, J., Yokota, T., Kuribara, K., Tokuhara, T., Drack, M., Schwödiauer, R., Graz, I., Bauer-Gogonea, S., Bauer, S., Someya, T., Nature 499, 458 (2013).CrossRefGoogle Scholar
Drack, M., Graz, I., Sekitani, T., Someya, T., Kaltenbrunner, M., Bauer, S., Adv. Mater. 27, 34 (2014).Google Scholar
Sonner, Z., Wilder, E., Gaillard, T., Kasting, G., Heikenfeld, J., Lab Chip 17, 2550 (2017).Google Scholar
Bandodkar, A.J., Jeerapan, I., Wang, J., ACS Sens. 1, 464 (2016).CrossRefGoogle Scholar
Heikenfeld, J., Nature 529, 475 (2016).Google Scholar
Sonner, Z., Wilder, E., Heikenfeld, J., Kasting, G., Beyette, F., Swaile, D., Sherman, F., Joyce, J., Hagen, J., Kelley-Loughnane, N., Naik, R., Biomicrofluidics 9, 31301 (2015).Google Scholar
Kim, Y.H., Kim, S.J., Kim, Y.-J., Shim, Y.-S., Kim, S.Y., Hong, B.H., Jang, H.W., ACS Nano 9, 10453 (2015).Google Scholar
Kim, M., Alrowais, H., Kim, C., Yeon, P., Ghovanloo, M., Brand, O., Lab Chip 17, 2323 (2017).Google Scholar
Zhang, F., Qu, G., Mohammadi, E., Mei, J., Diao, Y., Adv. Funct. Mater. 27 (2017), doi:10.1002/adfm.201701117.Google Scholar
Gao, W., Emaminejad, S., Nyein, H.Y.Y., Challa, S., Chen, K., Peck, A., Fahad, H.M., Ota, H., Shiraki, H., Kiriya, D., Lien, D.-H., Brooks, G.A., Davis, R.W., Javey, A., Nature 529, 509 (2016).Google Scholar
Mishra, R.K., Hubble, L.J., Martín, A., Kumar, R., Barfidokht, A., Kim, J., Musameh, M.M., Kyratzis, I.L., Wang, J., ACS Sens. 2, 553 (2017).Google Scholar
Lacour, S.P., Courtine, G., Guck, J., Nat. Rev. Mater. 1 (2016), doi:10.1038/natrevmats.2016.63.Google Scholar
Cai, G., Wang, J., Qian, K., Chen, J., Li, S., Lee, P.S., Adv. Sci. U.S.A. 4 (2017), doi:10.1002/advs.201600190.Google Scholar
Lipomi, D.J., Adv. Mater. 28, 4180 (2016).Google Scholar
Kim, D.-H., Song, J., Choi, W.M., Kim, H.-S., Kim, R.-H., Liu, Z., Huang, Y.Y., Hwang, K.-C., Zhang, Y., Rogers, J.A., Proc. Natl. Acad. Sci. 105, 18675 (2008).Google Scholar
Mohan, A.M.V., Kim, N., Gu, Y., Bandodkar, A.J., You, J.-M., Kumar, R., Kurniawan, J.F., Xu, S., Wang, J., Adv. Mater. Technol. 2 (2017), doi:10.1002/admt.201600284.Google Scholar
Root, S.E., Savagatrup, S., Printz, A.D., Rodriquez, D., Lipomi, D.J., Chem. Rev. 117, 6467 (2017).CrossRefGoogle Scholar
Savagatrup, S., Printz, A.D., O’Connor, T.F., Zaretski, A.V., Lipomi, D.J., Chem. Mater. 26, 3028 (2014).Google Scholar
Qu, G., Kwok, J.J., Diao, Y., Acc. Chem. Res. 49, 2756 (2016).CrossRefGoogle Scholar
Chung, H., Diao, Y., J. Mater. Chem. C 4, 3915 (2016).Google Scholar
Dickey, M.D., Adv. Mater. (2017), doi:10.1002/adma.201606425.Google Scholar
Kazem, N., Hellebrekers, T., Majidi, C., Adv. Mater. 29 (2017), doi:10.1002/adma.201605985.CrossRefGoogle Scholar
Mohammed, M.G., Kramer, R., Adv. Mater. 29 (2017), doi:10.1002/adma.201604965.Google Scholar
Bilodeau, R.A., White, E.L., Kramer, R.K., Proc. IEEE/RSJ Inter. Conf. Intell. Robots Syst. (IROS) (2015), pp. 23242329.Google Scholar
Keplinger, C., Sun, J.-Y., Foo, C.C., Rothemund, P., Whitesides, G.M., Suo, Z., Science 341, 984 (2013).Google Scholar
Kim, C.-C., Lee, H.-H., Oh, K.H., Sun, J.-Y., Science 353, 682 (2016).CrossRefGoogle Scholar
Ma, J., Lee, J., Han, S.S., Oh, K.H., Nam, K.T., Sun, J.-Y., ACS Appl. Mater. Interfaces 8, 29220 (2016).Google Scholar
Zhu, F., Cheng, L., Wang, Z.J., Hong, W., Wu, Z.L., Yin, J., Qian, J., Zheng, Q., ACS Appl. Mater. Interfaces 9, 11363 (2017).Google Scholar
Gong, J.P., Soft Matter 6, 2583 (2010).Google Scholar
Sun, J.-Y., Zhao, X., Illeperuma, W.R.K., Chaudhuri, O., Oh, K.H., Mooney, D.J., Vlassak, J.J., Suo, Z., Nature 489, 133 (2012).CrossRefGoogle Scholar
Sun, T.L., Kurokawa, T., Kuroda, S., Ihsan, A.B., Akasaki, T., Sato, K., Haque, M.A., Nakajima, T., Gong, J.P., Nat. Mater. 12, 932 (2013).Google Scholar
Darnell, M.C., Sun, J.-Y., Mehta, M., Johnson, C., Arany, P.R., Suo, Z., Mooney, D.J., Biomaterials 34, 8042 (2013).Google Scholar
Odent, J., Wallin, T.J., Pan, W., Kruemplestaedter, K., Shepherd, R.F., Giannelis, E.P., Adv. Funct. Mater., doi:10.1002/adfm.201701807.Google Scholar
Su, Y., Ping, X., Yu, K.J., Lee, J.W., Fan, J.A., Wang, B., Li, M., Li, R., Harburg, D.V., Huang, Y., Yu, C., Mao, S., Shim, J., Yang, Q., Lee, P.-Y., Armonas, A., Choi, K.-J., Yang, Y., Paik, U., Chang, T., Dawidczyk, T.J., Huang, Y., Wang, S., Rogers, J.A., Adv. Mater. 29 (2017), doi:10.1002/adma.201604989.Google Scholar
Zhang, Y., Wang, S., Li, X., Fan, J.A., Xu, S., Song, Y.M., Choi, K.-J., Yeo, W.-H., Lee, W., Nazaar, S.N., Lu, B., Yin, L., Hwang, K.-C., Rogers, J.A., Huang, Y., Adv. Funct. Mater. 24, 2028 (2014).Google Scholar
Naserifar, N., LeDuc, P.R., Fedder, G.K., Adv. Mater. 28, 3584 (2016).Google Scholar
Libanori, R., Erb, R.M., Reiser, A., Le Ferrand, H., Süess, M.J., Spolenak, R., Studart, A.R., Nat. Commun. 3, 1265 (2012).Google Scholar
Wirthl, D., Pichler, R., Drack, M., Kettlguber, G., Moser, R., Gerstmayr, R., Hartmann, F., Bradt, E., Kaltseis, R., Siket, C.M., Schausberger, S.E., Hild, S., Bauer, S., Kaltenbrunner, M., Sci. Adv. 3, e1700053 (2017).Google Scholar
Choi, M.K., Park, O.K., Choi, C., Qiao, S., Ghaffari, R., Kim, J., Lee, D.J., Kim, M., Hyun, W., Kim, S.J., Hwang, H.J., Kwon, S.-H., Hyeon, T., Lu, N., Kim, D.-H., Adv. Healthc. Mater. 5, 80 (2016).Google Scholar
Sitti, M., Fearing, R.S., J. Adhes. Sci. Technol. 17, 1055 (2003).Google Scholar
Waite, J.H., J. Exp. Biol. 220, 517 (2017).Google Scholar
Lee, B.P., Konst, S., Adv. Mater. 26, 3415 (2014).Google Scholar
Laschi, C., Cianchetti, M., Mazzolai, B., Margheri, L., Follador, M., Dario, P., Adv. Robot. 26, 709 (2012).Google Scholar
Anderson, I.A., Gisby, T.A., McKay, T.G., O’Brien, B.M., Calius, E.P., J. Appl. Phys. 112, 41101 (2012).Google Scholar
Zhao, H., O’Brien, K., Li, S., Shepherd, R.F., Sci. Robot. 1 (2016), doi:10.1126/scirobotics.aai7529.Google Scholar
Cai, G., Wang, J., Lee, P.S., Acc. Chem. Res. 49, 1469 (2016).Google Scholar
Yan, C., Kang, W., Wang, J., Cui, M., Wang, X., Foo, C.Y., Chee, K.J., Lee, P.S., ACS Nano 8, 316 (2014).Google Scholar
Morin, S.A., Shepherd, R.F., Kwok, S.W., Stokes, A.A., Nemiroski, A., Whitesides, G.M., Science 337, 828 (2012).Google Scholar
Wallin, T.J., Pikul, J.H., Bodkhe, S., Peele, B.N., Murray, B.C.M., Therriault, D., McEnerney, B.W., Dillon, R.P., Giannelis, E.P., Shepherd, R.F., J. Mater. Chem. B 5, 6249 (2017).Google Scholar
Morin, S.A., Shevchenko, Y., Lessing, J., Kwok, S.W., Shepherd, R.F., Stokes, A.A., Whitesides, G.M., Adv. Mater. 26, 5991 (2014).Google Scholar
Robinson, S.S., O’Brien, K.W., Zhao, H., Peele, B.N., Larson, C.M., Mac Murray, B.C., Van Meerbeek, I.M., Dunham, S.N., Shepherd, R.F., Extreme Mech. Lett. 5, 47 (2015).Google Scholar
Li, J., Celiz, A.D., Yang, J., Yang, Q., Wamala, I., Whyte, W., Seo, B.R., Vasilyev, N.V., Vlassak, J.J., Suo, Z., Mooney, D.J., Science 357, 378 (2017).Google Scholar
Herbst, F., Döhler, D., Michael, P., Binder, W.H., Macromol. Rapid Commun. 34, 203 (2013).Google Scholar
Binder, W.H., Self-Healing Polymers: From Principles to Applications (Wiley, Weinheim, Germany, 2013).Google Scholar
Kaltenbrunner, M., Kettlgruber, G., Siket, C., Schwoediauer, R., Bauer, S., Adv. Mater. 22, 2065 (2010).Google Scholar
Gaikwad, A.M., Zamarayeva, A.M., Rousseau, J., Chu, H., Derin, I., Steingart, D.A., Adv. Mater. 24, 5071 (2012).Google Scholar
Wang, C., Zheng, W., Yue, Z., Too, C.O., Wallace, G.G., Adv. Mater. 23, 3580 (2011).Google Scholar
Ren, J., Zhang, Y., Bai, W., Chen, X., Zhang, Z., Fang, X., Weng, W., Wang, Y., Peng, H., Angew. Chem. Int. Ed. Engl. 126, 7998 (2014).Google Scholar
Xie, K., Wei, B., Adv. Mater. 26, 3592 (2014).CrossRefGoogle Scholar
Xu, S., Zhang, Y., Cho, J., Lee, J., Huang, X., Jia, L., Fan, J.A., Su, Y., Su, J., Zhang, H., Cheng, H., Lu, B., Yu, C., Chuang, C., Kim, T., Song, T., Shigeta, K., Kang, S., Dagdeviren, C., Petrov, I., Braun, P.V., Huang, Y., Paik, U., Rogers, J.A., Nat. Commun. 4, 1543 (2013).Google Scholar
Qi, Y., Jafferis, N.T., Lyons, K., Lee, C.M., Ahmad, H., McAlpine, M.C., Nano Lett. 10, 524 (2010).CrossRefGoogle Scholar
Maurya, D., Zhou, Y., Wang, Y., Yan, Y., Li, J., Viehland, D., Priya, S., Sci. Rep. 5 (2015), doi:10.1038/srep08595.Google Scholar
Priya, S., Song, H.-C., Zhou, Y., Varghese, R., Chopra, A., Kim, S.-G., Kanno, I., Wu, L., Ha, D.S., Ryu, J., Polcawich, R.G., Energy Harvest. Syst. 4, 3 (2017).Google Scholar
Invernizzi, F., Dulio, S., Patrini, M., Guizzetti, G., Mustarelli, P., Chem. Soc. Rev. (2016), doi:10.1039/C5CS00812C.Google Scholar
Suarez, F., Parekh, D.P., Ladd, C., Vashaee, D., Dickey, M.D., Öztürk, M.C., Appl. Energy. 202, 736 (2017).Google Scholar
O’Connor, T.F., Zaretski, A.V., Savagatrup, S., Printz, A.D., Wilkes, C.D., Diaz, M.I., Sawyer, E.J., Lipomi, D.J., Sol. Energy Mater. Sol. Cells 144, 438 (2016).Google Scholar
Jia, W., Valdés-Ramírez, G., Bandodkar, A.J., Windmiller, J.R., Wang, J., Angew. Chem. Int. Ed. Engl. 52, 7233 (2013).CrossRefGoogle Scholar
Jia, W., Wang, X., Imani, S., Bandodkar, A.J., Ramírez, J., Mercier, P.P., Wang, J., J. Mater. Chem. A 2, 18184 (2014).Google Scholar
Kaltenbrunner, M., Adam, G., Głowacki, E.D., Drack, M., Schwödiauer, R., Leonat, L., Apaydin, D.H., Groiss, H., Scharber, M.C., White, M.S., Sariciftci, N.S., Bauer, S., Nat. Mater. 14, 1032 (2015).Google Scholar
Kim, T., Kim, J.-H., Kang, T.E., Lee, C., Kang, H., Shin, M., Wang, C., Ma, B., Jeong, U., Kim, T.-S., Kim, B.J., Nat. Commun. 6 (2015), doi:10.1038/ncomms9547.Google Scholar
Lipomi, D.J., Tee, B.C.-K., Vosgueritchian, M., Bao, Z., Adv. Mater. 23, 1771 (2011).Google Scholar
Mercier, P.P., Lysaght, A.C., Bandyopadhyay, S., Chandrakasan, A.P., Stankovic, K.M., Nat. Biotechnol. 30, 1240 (2012).Google Scholar
Chen, L.Y., Tee, B.C.-K., Chortos, A.L., Schwartz, G., Tse, V., Lipomi, D.J., Wong, H.-S.P., McConnell, M.V., Bao, Z., Nat. Commun. 5 (2014), doi:10.1038/ncomms6028.Google Scholar