Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-27T07:40:08.042Z Has data issue: false hasContentIssue false

Structural Ordering at the Solid–Liquid Interface

Published online by Cambridge University Press:  31 January 2011

Get access

Abstract

Many processes in nature and technology are based on the static and dynamic properties of solid–liquid interfaces. Prominent examples are crystal growth, melting, and recrystallization. These processes are strongly affected by the local structure at the solid–liquid interface. Therefore, it is mandatory to understand the change in the structure across the interface. The break of the translational symmetry at the interface induces ordering phenomena, and interactions between the liquid's molecules and the atomically corrugated solid surface may induce additional ordering effects. In the past decade, new techniques have been developed to investigate the structural properties of such (deeply) buried interfaces in their natural environment. These methods are based on deeply penetrating probes such as brilliant x-ray beams, providing full access to the structure parallel and perpendicular to the interface. Here, we review the results of a number of case studies including liquid metals in contact with Group IV elements (diamond and silicon), where charge transfer effects at the interface may come into play. Another particularly important liquid in our environment is water. The structural properties of water vary widely as it is brought in contact with other materials. We will then proceed from these seemingly simple cases to complex fluids such as colloids.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Veen, J.F. van der, Surface Sci. 433–435 (1999) p.1.CrossRefGoogle Scholar
2Persson, B.N.J., Sliding Friction (Springer, New York, 1998).CrossRefGoogle Scholar
3Bushan, B., Israelachvili, J.N., and Landman, U., Nature 274 (1995) p.607.CrossRefGoogle Scholar
4Zwanenburg, M.J., “X-ray Waveguiding Studies of Ordering Phenomena in Confined Fluids,” thesis, University of Amsterdam (2001).Google Scholar
5Israelachvili, J.N., Intermolecular and Surface Forces, 2nd Ed., (Academic Press, London, 1991).Google Scholar
6Raviv, U., Laurat, P., and Klein, J., Nature 413 (2001) p.51.CrossRefGoogle Scholar
7Ruan, C.-Y., Lobastov, V.A., Vigliotti, F., Chen, S., and Zewail, A.H., Science 304 (2004) p.80.CrossRefGoogle Scholar
8Müll, A., Krickemeyer, E., Bögge, H., Schmidtmann, M., Botar, B., and Talismanova, M.O., Angew. Chem. 115 (2003) p.2131.CrossRefGoogle Scholar
9Huisman, W.J., Peters, J.F., Zwanenburg, M.J., Vries, S. Ade, Derry, T.E., Abernathy, D., and Veen, J.F. van der, Nature 390 (1997) p.379.CrossRefGoogle Scholar
10Wasan, D.T. and Nikolov, A.D., Nature 423 (2003) p.156.CrossRefGoogle Scholar
11Auer, S. and Frenkel, D., Ann. Rev. Phys. Chem. 55 (2004) p.333.CrossRefGoogle Scholar
12Zwanenburg, M.J., Bongaerts, J.H.H., Peters, J.F., Riese, D.O., and Veen, J.F. van der, Phys. Rev. Lett. 85 (2000) p.5154.CrossRefGoogle Scholar
13Seeck, O.H., Kim, H., Lee, D.R., Shu, D., Kaendler, I.D., Basu, J.K., and Sinha, S.K., Europhys. Lett. 60 (2002) p.376.CrossRefGoogle Scholar
14Yu, C.-J., Richter, A.G., Datta, A., Durbin, M.K., and Dutta, P., Phys. Rev. Lett. 82 (1999) p.2326.CrossRefGoogle Scholar
15See contributions in Synchrotron Radiation News 12 (2) (1999).Google Scholar
16Miranda, P.B., Xu, L., Shen, Y.R., and Salmeron, M., Phys. Rev. Lett. 81 (1998) p.5876.CrossRefGoogle Scholar
17Reedijk, M.F., Arsic, J., Hollander, F.F.A., Vries, S.A. de, and Vlieg, E., Phys. Rev. Lett. 90 066103 (2003).Google Scholar
18Fenter, P., McBride, M.T., Srajer, G., Sturchio, N.C., and Bosbach, D., J. Phys. Chem. B 105 (2001) p.8112.CrossRefGoogle Scholar
19Cheng, L., Fenter, P., Nagy, K.L., Schlegel, M.L., and Sturchio, N.C., Phys. Rev. Lett. 87 156103 (2001).CrossRefGoogle Scholar
20Toney, M.F., Howard, J.N., Richter, J., Borges, G.L., Gordon, J.G., Melroy, O.R., Wiesler, D.G., Yee, D., and Sorensen, L., Nature 368 (1994) p.444.CrossRefGoogle Scholar
21Engemann, S., Reichert, H., Dosch, H., Bilgram, J., Honkimäki, V., and Snigirev, A., Phys. Rev. Lett. 92 205701 (2004).CrossRefGoogle Scholar
22Zhao, M., Chekmarev, D.S., Cai, Z.-H., and Rice, S.A., Phys. Rev. B 56 (1997) p.7033.Google Scholar
23Reichert, H., Klein, O., Dosch, H., Denk, M., Honkimäki, V., Lippmann, T., and Reiter, G., Nature 408 (2000) p.839.CrossRefGoogle Scholar
24, Reichert etal., unpublished.Google Scholar
25Israelachvili, J.N. and McGuiggan, P.M., J.Mater. Res. 5 (1990) p.2223.CrossRefGoogle Scholar
26Pusey, P.N. and Megen, W. van, Nature 320 (1986) p.340.CrossRefGoogle Scholar
27Solak, H.H., David, C., Gobrecht, J., Golovkina, V., Cerrina, F., Kim, S.O., and Nealy, P.F., Microelectron. Eng. 67 (2003) p.56.CrossRefGoogle Scholar