Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-29T03:18:04.288Z Has data issue: false hasContentIssue false

Theory of Nanocomposite Network Transistors for Macroelectronics Applications

Published online by Cambridge University Press:  31 January 2011

Get access

Abstract

A new class of nanocomposite network materials based on carbon nanotubes or silicon nanowires for thin-film transistors promises significant improvement in the performance of large-area electronics, or macroelectronics. Evaluation of this novel materials technology requires the development of device models. A multicomponent heterogeneous stick-percolation theory is used to show that the key features of this new transistor technology are the consequences of the percolating spatial geometry of the nanosticks (nanotubes, nanorods, or nanowires) that form the channel.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Seidel, R.Graham, A.P.Unger, E.Dues-berg, G.S., Liebau, M.Steinhoegl, W.Kreupl, F. and Hoenlein, W.Nano Lett. 4 (2004) p.831.CrossRefGoogle Scholar
2Seidel, R.V.Graham, A.P.Rajasekharan, B.Unger, E.Liebau, M.Duesberg, G.S.Kreupl, F. and Hoenlein, W.J. Appl. Phys. 96 (2004) p.6694.CrossRefGoogle Scholar
3Snow, E.S.Novak, J.P.Campbell, P.M. and Park, D.Appl. Phys. Lett. 82 (2003) p.2145.CrossRefGoogle Scholar
4Snow, E.S.Novak, J.P.Lay, M.D.Houser, E.H.Perkins, F.K. and Campbell, P.M.J.Vac. Sci. Technol. B22 (2004) p.1990.CrossRefGoogle Scholar
5Zhou, Y.X.Gaur, A.Hur, S.H.Kocabas, C.Meitl, M.A.Shim, M. and Rogers, J.A.Nano Lett. 4 (2004) p.2031.CrossRefGoogle Scholar
6Duan, X.F.Niu, C.M.Sahi, V.Chen, J.Parce, J.W.Empedocles, S. and Goldman, J.L.Nature 425 (2003) p.274.CrossRefGoogle Scholar
7Bo, X.Z.Lee, C.Y.Strano, M.S.Goldfinger, M.Nuckolls, C. and Blanchet, G.B.Appl. Phys. Lett. 86 182102 (2005).CrossRefGoogle Scholar
8Hu, L.Hecht, D.S. and Gruner, G.Nano Lett. 4 (2004) p.2513.CrossRefGoogle Scholar
9Artukovic, E.Kaempgen, M.Hecht, D.S.Roth, S. and Gruner, G.Nano Lett. 5 (2005) p. 757.CrossRefGoogle Scholar
10Novak, J.P.Snow, E.S.Houser, E.J.Park, D.Stepnowski, J.L. and McGill, R.A.Appl. Phys. Lett. 83 (2003) p.4026.CrossRefGoogle Scholar
11Menard, E.Lee, K.J.Khang, D.Y.Nuzzo, R.G. and Rogers, J.A.Appl. Phys. Lett. 84 (2004) p.5398.CrossRefGoogle Scholar
12Szleifer, I. and Yerushalmi-Rozen, R., Polymer 46 (2005) p.7803.CrossRefGoogle Scholar
13Yerushalmi-Rozen, R. and Szleifer, I.Soft Matter 2 (2006) p.24.CrossRefGoogle Scholar
14Dimitrakopoulos, C.D. and Mascaro, D.J.IBM J.Res. Dev. 45 (2001) p.11.CrossRefGoogle Scholar
15Pope, M. and Swenberg, C.E.Electronic Processes in Organic Crystals and Polymers (Oxford University Press, New York, 1999).CrossRefGoogle Scholar
16Peumans, P.Yakimov, A. and Forrest, S.R.J.Appl. Phys. 93 (2003) p.3693.CrossRefGoogle Scholar
17Ieong, M.Doris, B.Kedzierski, J.Rim, K. and Yang, M.Science 306 (2004) p.2057.CrossRefGoogle Scholar
18Kagan, C.R. and Andry, P.Thin Film Transistors (Marcel Dekker, New York, 2003).CrossRefGoogle Scholar
19Marinov, O.Deen, M.J. and Iniguez, B.IEE Proceedings–Circuits Devices and Systems 152 (2005) p.189.CrossRefGoogle Scholar
20Kumar, S.Pimparkar, N.Murthy, J. and Alam, M. unpublished.Google Scholar
21Pimparkar, N.Kumar, S.Murthy, J. and Alam, M.A.Electron Dev. Lett. (2006) submitted.Google Scholar
22Taur, Y. and Ning, T.Fundamentals of Modern theory VLSI Devices (Cambridge University Press, Cambridge, UK, 1998).Google Scholar
23Kumar, S.Murthy, J.Y. and Alam, M.A.Phys. Rev. Lett. 95 066802 (2005).CrossRefGoogle Scholar
24Goudsmit, S.Rev. Mod. Phys. 17 (1945) p.321.CrossRefGoogle Scholar
25Stauffer, D. and Aharony, A.Introduction to Percolation Theory (Taylor and Francis, London, 1992).Google Scholar
26Kaye, B.ARandom Walk through Fractal Dimensions (VCH, New York, 1989).Google Scholar
27Pike, G.E. and Seager, C.H.Phys. Rev. B10 (1974) p.1421.CrossRefGoogle Scholar
28Pimparkar, N.Guo, J. and Alam, M.A. in IEDM Tech. Dig. 21. 5 (2005) p.541.Google Scholar
29Kokabas, C.Pimparkar, N.Yesilyurt, O.Alam, M.A. and Rogers, J.A.Phys. Rev. Lett. (2006) submitted.Google Scholar
30Kumar, S.Pimparkar, N.Murthy, J.Y. and Alam, M.A.Appl. Phys. Lett. 88 123505 (2006).CrossRefGoogle Scholar
31Collins, P.C.Arnold, M.S. and Avouris, P.Science 292 (2001) p.706.CrossRefGoogle Scholar
32Fuhrer, M.S.Nygard, J.Shih, L.Forero, M.Yoon, Y.G.Mazzoni, M.S.C.Choi, H.J.Ihm, J.Louie, S.G.Zettl, A. and McEuen, P.L.Science 288 (2000) p.494.CrossRefGoogle Scholar
33Frank, D.J. and Lobb, C.J.Phys. Rev. B37 (1988) p.302.CrossRefGoogle Scholar
34Patankar, S.V.Numerical Heat Transfer and Fluid Flow (Hemisphere, New York, 1980).Google Scholar
35Hur, S.H.Yoon, M.H.Gaur, A.Shim, M.Facchetti, A.Marks, T.J. and Rogers, J.A.J. Am. Chem. Soc. 127 (2005) p.13808.CrossRefGoogle Scholar
36Young, K.K.IEEE Trans. Electron Dev. 36 (1989) p.399.CrossRefGoogle Scholar
37Balberg, I. and Binenbaum, N.Phys. Rev. B28 (1983) p.3799.CrossRefGoogle Scholar