Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-28T19:37:28.440Z Has data issue: false hasContentIssue false

Triblock Copolymer as an Effective Membrane-Sealing Material

Published online by Cambridge University Press:  31 January 2011

Get access

Abstract

An intact cell membrane serves as a permeable barrier, regulating the influx and efflux of ions and small molecules. When the integrity of the membrane is compromised, its barrier function is also disrupted, threatening the survival of the cell. Triblock copolymer surfactants of the form poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) have been shown to help seal structurally damaged membranes, arresting the leakage of intracellular materials.

In order to understand how this particular family of triblock copolymers helps seal damaged membranes, model lipid monolayer and bilayer systems have been used to unravel the nature of the lipid/copolymer interaction. The copolymer surfactant is found to selectively insert into structurally compromised membranes, thus localizing its sealing effect on the damaged regions. The inserted polymer is “squeezed out” when the lipid packing density is increased, suggesting a mechanism for the cell to be rid of the polymer when the membrane integrity is restored.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Parsegian, A., Nature 221 (1969) p.844.Google Scholar
2Schanne, P.F. and Ceretti, E.R.P., Impedance Measurements in Biological Cells (Wiley, New York, 1978).Google Scholar
3Halliwell, B. and Gutterridge, J., Eds., Free Radicals in Biology and Medicine, 2nd ed. (Claren-don Press, Oxford, UK, 1991).Google Scholar
4Hannig, J. and R.Lee, C., IEEE Trans. Plasma Sci. 28 (1) (2000) p.97.CrossRefGoogle Scholar
5Karlsson, J.O., Cravalho, E.G., Rinkes, I.H. Borel, Tompkins, R.G., Yarmush, M.L., and Toner, M., Biophys. J. 65 (1993) p.2524.CrossRefGoogle Scholar
6Wells, J.M., Li, L.H., Sen, A., Jahreis, G.P., and Hui, S.W., Gene Ther. 7 (7)(2000) p.541.Google Scholar
7Tendeloo, V.F.I. Van, Ponsaerts, P., Lardon, F., Nijs, G., Lenjou, M., Broeckhoven, C. Van, Bockstaele, D.R. Van, and Berneman, Z.N., Blood 98 (1) (2001) p.49.Google Scholar
8Prausnitz, M.R., Bose, V.G., Langer, R., and Weaver, J.C., Proc. Natl. Acad. Sci. USA 90 (22) (1993) p.10504.Google Scholar
9Neumann, E., Schaeferridder, M., Wang, Y., and Hofschneider, P.H., EMBO J. 1 (7) (1982) p. 841.Google Scholar
10Belehradek, M., Domenge, C., Luboinski, B., Orlowski, S., Belehradek, J., and L.Mir, M., Cancer 72 (12) (1993) p.3694.Google Scholar
11Engstrom, P.E., Persson, B.R.R., and Sal-ford, L.G., Biochim. Biophys. Acta 1473 (2-3) (1999) p.321.CrossRefGoogle Scholar
12Gehl, J., Sorensen, T.H., Nielsen, K., Raskmark, P., Nielsen, S.L., Skovsgaard, T., and Mir, L.M., Biochim. Biophys. Acta 1428 (2-3) (1999) p.233.Google Scholar
13Jaroszeski, M.J., Dang, V., Pottinger, C., Hickey, J., Gilbert, R., and Heller, R., Anti-Cancer Drugs 11 (3) (2000) p.201.Google Scholar
14Saeboe-Larssen, S., Fossberg, E., and Gaudernack, G., J. Immunol. Meth. 259 (1-2) (2002) p.191.CrossRefGoogle Scholar
15Mir, L.M., Bureau, M.F., Gehl, J., Rangara, R., Rouy, D., Caillaud, J.M., Delaere, P., Branellec, D., Schwartz, B., and Scherman, D., Proc. Natl. Acad. Sci. USA 96 (8) (1999) p.4262.CrossRefGoogle Scholar
16Chang, D.C. and Reese, T.S., Biophys. J. 58 (1990) p.1.CrossRefGoogle Scholar
17Chu, B. and Zhou, Z., Surf. Sci. Ser. 60 (1996) p.67.Google Scholar
18Schmolka, I.R., Ann. N.Y. Acad. Sci. 720 (1994) p.92.Google Scholar
19Lee, R.C., River, P., Pan, F.-S., Ji, L., and Wollmann, R.L., Proc. Natl. Acad. Sci. USA 89 (1992) p.4524.Google Scholar
20Padanilam, J.T., Bischof, J.C., Lee, R.C., Cravalho, E.G., Tompkins, R.G., Yarmush, M.L., and Toner, M., Ann. N.Y. Acad. Sci. 720 (1994) p. 111.CrossRefGoogle Scholar
21Merchant, F.A., Holmes, W.H., Capelli-Schellpfeffer, M., Lee, R.C., and Toner, M., J. Surg. Res. 74 (1998) p.131.Google Scholar
22Frim, D.M., Wright, D.A., Curry, D.J., Cromie, W., Lee, R.C., and Kang, U.J., NeuroReport 15 (1) (2004) p.171.Google Scholar
23Marks, J.D., Cromie, W., and Lee, R.C., Soc. Neurosci. Abs. 24 (1) (1998) p.462.Google Scholar
24Marks, J.D., Pan, C.-Y., Bushell, T., Cromie, W., and Lee, R.C., FASEB J. (2001) doi:10.1096/fj.00-0547fje.CrossRefGoogle Scholar
25Greenebaum, B., Blossfield, K., Hannig, J., Carrillo, C.S., Beckett, M.A., RWeichselbaum, .R., and Lee, R.C., Burns 30 (6) (2004) p. 539.Google Scholar
26Palmer, J.S., Cromie, W.J., and Lee, R.C., J.Urol. 159 (1998) p.2136.Google Scholar
27Hannig, J., Yu, J., Beckett, M., Weichsel-baum, R., and Lee, R.C., Int. J. Rad. Biol. 75 (1999) p.379.Google Scholar
28Terry, M.A., Hannig, J., Carrillo, C.S., Beckett, M.A., Weichselbaum, R.R., and Lee, R.C., Ann. N.Y. Acad. Sci. 888 (1999) p.274.Google Scholar
29Adams-Graves, P., Kedar, A., Koshy, M., Steinberg, M., Veith, R., Ward, D., Crawford, R., Edwards, S., Bustrack, J., and Emanuels, M., Blood 90 (5)(1997) p.2041.CrossRefGoogle Scholar
30Batrakova, E., Lee, S., Li, S., Venne, A., Alkhov, V., and Kabanov, A., Pharm. Res. 16 (9) (1999) p.1373.Google Scholar
31Maskarinec, S.A., Hannig, J., Lee, R.C., and Lee, K.Y.C., Biophys. J. 82 (2002) p.1453.CrossRefGoogle Scholar
32Maskarinec, S.A., Wu, G., and Lee, K.Y.C., “Membrane Sealing by Polymers in Cell Injury: Mechanism, Responses and Repair,” edited by Lee, R.C. and Hamann, K., Ann. N.Y. Acad. Sci. 1066 (2006) p.310.Google Scholar
33Wu, G., Ege, C., Majewski, J., Kjaer, K., and Lee, K.Y.C., Phys. Rev. Lett. 93 (2004) p.02810.Google Scholar
34Wu, G., Majewski, J., Ege, C., Kjaer, K., Weygand, M., and Lee, K.Y.C., Biophys. J. 89 (2005) p.3159.Google Scholar
35Maskarinec, S.A. and Lee, K.Y.C., Langmuir 19 (5) (2003) p.1809.Google Scholar