Published online by Cambridge University Press: 31 January 2011
An intact cell membrane serves as a permeable barrier, regulating the influx and efflux of ions and small molecules. When the integrity of the membrane is compromised, its barrier function is also disrupted, threatening the survival of the cell. Triblock copolymer surfactants of the form poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) have been shown to help seal structurally damaged membranes, arresting the leakage of intracellular materials.
In order to understand how this particular family of triblock copolymers helps seal damaged membranes, model lipid monolayer and bilayer systems have been used to unravel the nature of the lipid/copolymer interaction. The copolymer surfactant is found to selectively insert into structurally compromised membranes, thus localizing its sealing effect on the damaged regions. The inserted polymer is “squeezed out” when the lipid packing density is increased, suggesting a mechanism for the cell to be rid of the polymer when the membrane integrity is restored.