Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-28T20:56:46.643Z Has data issue: false hasContentIssue false

Two-dimensional transition-metal dichalcogenide materials: Toward an age of atomic-scale photonics

Published online by Cambridge University Press:  13 July 2015

Linyou Cao*
Affiliation:
Department of Materials Science and Engineering, North Carolina State University, USA; lcao2@ncsu.edu
Get access

Abstract

Two-dimensional (2D) transition-metal dichalcogenides (TMDCs) such as MoS2, WS2, MoSe2, and WSe2 present an unprecedented excitonic materials family. These materials promise to open up a new age of atomic-scale photonics where devices can be scaled down to the truly atomic level and provide novel functionalities that cannot be obtained with conventional materials systems. Knowledge of the exciton dynamics in these materials is key to the development of the photonic devices. This article reviews recent studies on the excitonic properties of 2D TMDCs and the strategies used to manipulate the exciton dynamics. It also highlights many important scientific questions that remain to be answered for the realization of atomic-scale photonics.

Type
Research Article
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Wilson, J.A., Yoffe, A.D., Adv. Phys. 18, 193 (1969).CrossRefGoogle Scholar
Han, M.Y., Ozyilmaz, B., Zhang, Y.B., Kim, P., Phys. Rev. Lett. 98, 206805 (2007).CrossRefGoogle Scholar
Mak, K.F., Lee, C., Hone, J., Shan, J., Heinz, T.F., Phys. Rev. Lett. 105, 136805 (2010).CrossRefGoogle Scholar
Cheiwchanchamnangij, T., Lambrecht, W.R.L., Phys. Rev. B Condens. Matter 85, 205302 (2012).CrossRefGoogle Scholar
Klots, A.R., Newaz, A.K.M., Wang, B., Prasai, D., Krzyzanowska, H., Lin, J.H., Caudel, D., Ghimire, N.J., Yan, J., Ivanov, B.L., Velizhanin, K.A., Burger, A., Mandrus, D.G., Tolk, N.H., Pantelides, S.T., Bolotin, K.I., Sci. Rep. 4, 6608 (2014).CrossRefGoogle Scholar
Komsa, H.-P., Krasheninnikov, A.V., Phys. Rev. B Condens. Matter 86, 241201 (2012).CrossRefGoogle Scholar
Qiu, D.Y., Jornada, F.H.D., Louie, S.G., Phys. Rev. Lett. 111, 216805 (2013).CrossRefGoogle Scholar
Ramasubramaniam, A., Phys. Rev. B Condens. Matter 86, 115409 (2012).CrossRefGoogle Scholar
Shi, H.L., Pan, H., Zhang, Y.W., Yakobson, B.I., Phys. Rev. B Condens. Matter 87, 155304 (2013).CrossRefGoogle Scholar
Kang, J., Tongay, S., Zhou, J., Li, J.B., Wu, J.Q., Appl. Phys. Lett. 102, 012111 (2013).CrossRefGoogle Scholar
Kośmider, K., Fernández-Rossier, J., Phys. Rev. B Condens. Matter 87, 075451 (2013).CrossRefGoogle Scholar
Komsa, H.-P., Krasheninnikov, A.V., Phys. Rev. B Condens. Matter 88, 085318 (2013).CrossRefGoogle Scholar
Yu, Y., Hu, S., Su, L., Huang, L., Liu, Y., Jin, Z., Purezky, A.A., Geohegan, D.B., Kim, K.W., Zhang, Y., Cao, L., Nano Lett. 15, 486 (2015).CrossRefGoogle Scholar
Tongay, S., Fan, W., Kang, J., Park, J., Koldemir, U., Suh, J., Narang, D.S., Liu, K., Ji, J., Li, J., Sinclair, R., Wu, J., Nano Lett. 14, 3185 (2014).CrossRefGoogle Scholar
Lee, C.-H., Lee, G.-H., Zande, A.M.V.D., Chen, W., Li, Y., Han, M., Cui, X., Arefe, G., Nuckolls, C., Heinz, T.F., Guo, J., Hone, J., Kim, P., Nat. Nanotechnol. 9, 676 (2014).CrossRefGoogle Scholar
Huang, C.M., Wu, S.F., Sanchez, A.M., Peters, J.J.P., Beanland, R., Ross, J.S., Rivera, P., Yao, W., Cobden, D.H., Xu, X.D., Nat. Mater. 13, 1096 (2014).CrossRefGoogle Scholar
Hong, X., Kim, J., Shi, S.-F., Zhang, Y., Jin, C., Sun, Y., Tongay, S., Wu, J., Zhang, Y., Wang, F., Nat. Nanotechnol. 9, 682 (2014).CrossRefGoogle Scholar
Gong, Y., Lin, J., Wang, X., Shi, G., Lei, S., Lin, Z., Zou, X., Ye, G., Vajtai, R., Yakobson, B.I., Terrones, H., Terrones, M., Tay, B.K., Lou, J., Pantelides, S.T., Liu, Z., Zhou, W., Ajayan, P.M., Nat. Mater. 13, 1135 (2014).CrossRefGoogle Scholar
Fang, H., Battaglia, C., Carraro, C., Nemsak, S., Ozdol, B., Kang, J.S., Bechtel, H.A., Desai, S.B., Kronast, F., Unal, A.A., Conti, G., Conlon, C., Palsson, G.K., Martin, M.C., Minor, A.M., Fadley, C.S., Yablonovitch, E., Maboudian, R., Javey, A., Proc. Natl. Acad. Sci. U.S.A. 111, 6198 (2014).CrossRefGoogle Scholar
Duan, X.D., Wang, C., Shaw, J.C., Cheng, R., Chen, Y., Li, H.L., Wu, X.P., Tang, Y., Zhang, Q.L., Pan, A.L., Jiang, J.H., Yu, R.Q., Huang, Y., Duan, X.F., Nat. Nanotechnol. 9, 1024 (2014).CrossRefGoogle Scholar
Splendiani, A., Sun, L., Zhang, Y.B., Li, T.S., Kim, J., Chim, C.Y., Galli, G., Wang, F., Nano Lett. 10, 1271 (2010).CrossRefGoogle Scholar
Zeng, H.L., Liu, G.B., Dai, J.F., Yan, Y.J., Zhu, B.R., He, R.C., Xie, L., Xu, S.J., Chen, X.H., Yao, W., Cui, X.D., Sci. Rep. 3, 1608 (2013).CrossRefGoogle Scholar
Kadantsev, E.S., Hawrylak, P., Solid State Commun. 152, 909 (2012).CrossRefGoogle Scholar
Coehoorn, R., Haas, C., Dijkstra, J., Flipse, C.J.F., Degroot, R.A., Wold, A., Phys. Rev. B Condens. Matter 35, 6195 (1987).CrossRefGoogle Scholar
Mattheis, L.F.. Phys. Rev. B Condens. Matter 8, 3719 (1973).CrossRefGoogle Scholar
Coehoorn, R., Haas, C., Degroot, R.A., Phys. Rev. B Condens. Matter 35, 6203 (1987).CrossRefGoogle Scholar
Kozawa, D., Kumar, R., Carvalho, A., Amara, K.K., Zhao, W., Wang, S., Toh, M., Ribeiro, R.M., Neto, A.H.C., Matsuda, K., Eda, G., Sci. Rep. 5, 4543 (2014).Google Scholar
Li, Y., Chernikov, A., Zhang, X., Rigosi, A., Hill, H.M., Zande, A.M.V.D., Chenet, D.A., Shih, E.-M., Hone, J., Heinz, T.F., Phys. Rev. B Condens. Matter 90, 205422 (2014).CrossRefGoogle Scholar
Xiao, D., Liu, G.B., Feng, W.X., Xu, X.D., Yao, W., Phys. Rev. Lett. 108, 196802 (2012).CrossRefGoogle Scholar
Cao, T., Wang, G., Han, W.P., Ye, H.Q., Zhu, C.R., Shi, J.R., Niu, Q., Tan, P.H., Wang, E., Liu, B.L., Feng, J., Nat. Commun. 3, 887 (2012).CrossRefGoogle Scholar
Jones, A.M., Yu, H.Y., Ghimire, N.J., Wu, S.F., Aivazian, G., Ross, J.S., Zhao, B., Yan, J.Q., Mandrus, D.G., Xiao, D., Yao, W., Xu, X.D., Nat. Nanotechnol. 8, 634 (2013).CrossRefGoogle Scholar
Zeng, H.L., Dai, J.F., Yao, W., Xiao, D., Cui, X.D., Nat. Nanotechnol. 7, 490 (2012).CrossRefGoogle Scholar
Zhang, Y.J., Oka, T., Suzuki, R., Ye, J.T., Iwasa, Y., Science 344, 725 (2014).CrossRefGoogle Scholar
Mak, K.F., He, K.L., Shan, J., Heinz, T.F., Nat. Nanotechnol. 7, 494 (2012).CrossRefGoogle Scholar
Feng, J., Qian, X.F., Huang, C.W., Li, J., Nat. Photonics 6, 865 (2012).CrossRefGoogle Scholar
Hill, H.M., Rigosi, A.F., Roquelet, C., Chernikov, A., Berkelbach, T.C., Reichman, D.R., Hybertsen, M.S., Brus, L.E., Heinz, T.F., Nano Lett. 15, 2992 (2015).CrossRefGoogle Scholar
Zhu, B.R., Chen, X., Cui, X.D., Sci. Rep. 5, 9218 (2014).CrossRefGoogle Scholar
Chernikov, A., Berkelbach, T.C., Hill, H.M., Rigosi, A., Li, Y., Aslan, O.B., Reichman, D.R., Hybertsen, M.S., Heinz, T.F., Phys. Rev. Lett. 113, 076802 (2014).CrossRefGoogle Scholar
Piper, J.R., Fan, S., ACS Photonics 1, 347 (2014).CrossRefGoogle Scholar
Beal, A.R., Hughes, H.P., J. Phys. C Solid State Phys. 12, 881 (1979).CrossRefGoogle Scholar
Zheng, J., Barton, R.A., Englund, D., ACS Photonics 1, 768 (2014).CrossRefGoogle Scholar
Wang, H., Zhang, C., Rana, F., Nano Lett. 15, 339 (2015).CrossRefGoogle Scholar
Docherty, C.J., Parkinson, P., Joyce, H.J., Chiu, M.-H., Chen, C.-H., Lee, M.-Y., Li, L.-J., Herz, L.M., Johnston, M.B., ACS Nano 8, 11147 (2014).CrossRefGoogle Scholar
Mak, K.F., He, K.L., Lee, C., Lee, G.H., Hone, J., Heinz, T.F., Shan, J., Nat. Mater. 12, 207 (2013).CrossRefGoogle Scholar
Ross, J.S., Wu, S.F., Yu, H.Y., Ghimire, N.J., Jones, A.M., Aivazian, G., Yan, J.Q., Mandrus, D.G., Xiao, D., Yao, W., Xu, X.D., Nat. Commun. 4, 6 (2013).CrossRefGoogle Scholar
Sercombe, D., Schwarz, S., Del Pozo-Zamudio, O., Liu, F., Robinson, B.J., Chekhovich, E.A., Tartakovskii, I.I., Kolosov, O., Tartakovskii, A.I., Sci. Rep. 3, 3489 (2013).CrossRefGoogle Scholar
Shi, H.Y., Yan, R.S., Bertolazzi, S., Brivio, J., Gao, B., Kis, A., Jena, D., Xing, H.G., Huang, L.B., ACS Nano 7, 1072 (2013).CrossRefGoogle Scholar
Lagarde, D., Bouet, L., Marie, X., Zhu, C.R., Liu, B.L., Amand, T., Tan, P.H., Urbaszek, B., Phys. Rev. Lett. 112, 047401 (2014).CrossRefGoogle Scholar
Wang, H., Zhang, C., Chan, W., Manolatou, C., Tiwari, S., Rana, F., Condens. Matter (2014), available at http://arxiv.org/abs/1409.3996.Google Scholar
Palummo, M., Bernardi, M., Grossman, J.C., Nano Lett. 15, 2794 (2015).CrossRefGoogle Scholar
Nan, H.Y., Wang, Z.L., Wang, W.H., Liang, Z., Lu, Y., Chen, Q., He, D.W., Tan, P.H., Miao, F., Wang, X.R., Wang, J.L., Ni, Z.H., ACS Nano 8, 5738 (2014).CrossRefGoogle Scholar
Mai, C., Barrette, A., Yu, Y.F., Semenov, Y.G., Kim, K.W., Cao, L.Y., Gundogdu, K., Nano Lett. 14, 202 (2014).CrossRefGoogle Scholar
Reed, J.C., Zhu, A.Y., Zhu, H., Yi, F., Cubukcu, E., Nano Lett. 15, 1967 (2015).CrossRefGoogle Scholar
Wu, S., Buckley, S., Schaibley, J.R., Feng, L., Yan, J., Mandrus, D.G., Hatami, F., Yao, W., Vučković, J., Majumdar, A., Xu, X., Nature 520, 69 (2015).CrossRefGoogle Scholar
Butun, S., Tongay, S., Aydin, K., Nano Lett. 15, 2992 (2015).CrossRefGoogle Scholar
Najmaei, S., Mlayah, A., Arbouet, A., Girard, C., Léotin, J., Lou, J., ACS Nano 8, 12682 (2014).CrossRefGoogle Scholar
Kang, Y., Najmaei, S., Liu, Z., Bao, Y., Wang, Y., Zhu, X., Halas, N.J., Nordlander, P., Ajayan, P.M., Lou, J., Fang, Z., Adv. Mater. 26, 6467 (2014).CrossRefGoogle Scholar
Ye, Y., Wong, Z.J., Lu, X., Zhu, H., Chen, X., Wang, Y., Zhang, X., Condens. Matter (2015), available at http://arxiv.org/abs/1503.06141.Google Scholar
Liu, X., Galfsky, T., Sun, Z., Xia, F., Lin, E.-C., Lee, Y.-H., Kéna-Cohen, S., Menon, V.M., Nat. Photonics 9, 30 (2015).CrossRefGoogle Scholar
Liu, H.-L., Shen, C.-C., Su, S.-H., Hsu, C.-L., Li, M.-Y., Li, L.-J., Appl. Phys. Lett. 105, 201905 (2014).CrossRefGoogle Scholar
Shen, C.-C., Hsu, Y.-T., Li, L.-J., Liu, H.-L., Appl. Phys. Express 6, 125801 (2013).CrossRefGoogle Scholar
Zhang, H., Ma, Y., Wan, Y., Rong, X., Xie, Z., Wang, W., Dai, L., Sci. Rep. 5, 8440 (2015).CrossRefGoogle Scholar