Published online by Cambridge University Press: 31 January 2011
The materials science community is poised to take advantage of new technologies that add unprecedented time resolution to already existing spatial-resolution capabilities. In the same way that chemists and biologists are using ultrafast optical, photon, and particle techniques to reveal transition pathways, materials scientists can expect to use variations of these methods to probe the most fundamental aspects of complex transient phenomena in materials. The combination of high-spatial-resolution imaging with high time resolution is critical because it enables the observation of specific phenomena that are important to developing fundamental understanding. Such a capability is also important because it enables experiments that are on the same time and length scales as recent high-performance computer simulations. This article describes several new techniques that have great potential for broader application in materials science, including electron, x-ray, and γ-ray imaging.