Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-15T08:28:24.149Z Has data issue: false hasContentIssue false

Vapor-assisted solution process for perovskite materials and solar cells

Published online by Cambridge University Press:  07 August 2015

Huanping Zhou
Affiliation:
Department of Materials Science and Engineering, University of California, Los Angeles, USA; happyzhou@ucla.edu
Qi Chen
Affiliation:
Department of Materials Science and Engineering, University of California, Los Angeles, USA; chachachenqi@ucla.edu
Yang Yang
Affiliation:
Department of Materials Science and Engineering, University of California, Los Angeles, USA; yangy@ucla.edu
Get access

Abstract

Hybrid organic–inorganic perovskites (e.g., CH3NH3PbX3, X represents a halide) have been highlighted for various applications, especially as light absorbers in third-generation photovoltaics. In the pursuit of low-cost and efficient perovskite solar technology, it is crucial to develop a facile method to fabricate conformal, compact perovskite films in an inexpensive and reproducible manner. Here, we report high-quality perovskite films controllably deposited via a facile low-temperature (<150°C) vapor-assisted solution process (VASP). Key steps include deposition of the inorganic framework by solution first, followed by a subsequent in situ reaction between the inorganic species and the desired organic vapor. The VASP approach differs from other conventional solution processing techniques because it retards nucleation and enables vigorous reorganization for film growth, with an absence of solvation, hydration, and undesirable structural transitions. Facilitated by excellent film quality, perovskite materials enable a power-conversion efficiency of ∼16.8% in the planar configuration of a solar cell. This method provides a simple approach to perovskite film preparation and paves the way toward high reproducibility and mass production of high-quality absorber films for solar devices.

Type
Research Article
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

American Physical Society, “April 25, 1954: Bell Labs Demonstrates the First Practical Silicon Solar Cell,” APS News 18 (4), (2009).Google Scholar
Turner, G., Global Renewable Energy Market Outlook 2013, Bloomberg New Energy Finance; https://www.bnef.com/insightdownload/7526/pdf (accessed April 11, 2014).Google Scholar
National Renewable Energy Laboratory, Best Research-Cell Efficiencies; http://www.nrel.gov/ncpv/images/efficiency_chart.jpg.Google Scholar
Snaith, H.J., J. Phys. Chem. Lett. 4, 3623 (2013).Google Scholar
Park, N.-G., Mater. Today 18, 65 (2015).Google Scholar
Gratzel, M., Nat. Mater. 13, 838 (2014).Google Scholar
Green, M.A., Ho-Baillie, A., Snaith, H.J., Nat. Photonics 8, 506 (2014).Google Scholar
Chen, Q., De Marco, N., Yang, Y., Song, T.-B., Chen, C.-C., Zhao, H., Hong, Z., Zhou, H., Yang, Y., Nano Today (forthcoming).Google Scholar
Kojima, A., Teshima, K., Shirai, Y., Miyasaka, T., J. Am. Chem. Soc. 131, 6050 (2009).Google Scholar
Im, J.-H., Lee, C.-R., Lee, J.-W., Park, S.-W., Park, N.-G., Nanoscale 3, 4088 (2011).CrossRefGoogle Scholar
Kim, H.S., Lee, C.R., Im, J.H., Lee, K.B., Moehl, T., Marchioro, A., Moon, S.J., Humphry-Baker, R., Yum, J.H., Moser, J.E., Gratzel, M., Park, N.G., Sci. Rep. 2, 591 (2012).CrossRefGoogle Scholar
Jeng, J.-Y., Chiang, Y.-F., Lee, M.-H., Peng, S.-R., Guo, T.-F., Chen, P., Wen, T.-C., Adv. Mater. 25, 3727 (2013).Google Scholar
Chen, Q., Zhou, H., Hong, Z., Luo, S., Duan, H.-S., Wang, H.-H., Liu, Y., Li, G., Yang, Y., J. Am. Chem. Soc. 136, 622 (2013).CrossRefGoogle Scholar
Liu, M., Johnston, M.B., Snaith, H.J., Nature 501, 395 (2013).CrossRefGoogle Scholar
Liu, D., Kelly, T.L., Nat. Photonics 8, 133 (2014).Google Scholar
Lee, M.M., Teuscher, J., Miyasaka, T., Murakami, T.N., Snaith, H.J., Science 338, 643 (2012).Google Scholar
Malinkiewicz, O., Yella, A., Lee, Y.H., Espallargas, G.M., Graetzel, M., Nazeeruddin, M.K., Bolink, H.J., Nat. Photonics 8, 128 (2014).Google Scholar
Yin, W.-J., Shi, T., Yan, Y., Adv. Mater. 26, 4653 (2014).CrossRefGoogle Scholar
Yin, W.-J., Shi, T., Yan, Y., J. Phys. Chem. C 119, 5253 (2015).Google Scholar
Burschka, J., Pellet, N., Moon, S.-J., Humphry-Baker, R., Gao, P., Nazeeruddin, M.K., Gratzel, M., Nature 499, 316 (2013).Google Scholar
Zhou, H., Chen, Q., Li, G., Luo, S., Song, T.-B., Duan, H.-S., Hong, Z., You, J., Liu, Y., Yang, Y., Science 345, 542 (2014).Google Scholar
Jeon, N.J., Noh, J.H., Kim, Y.C., Yang, W.S., Ryu, S., Seok, S.I., Nat. Mater. 13, 897 (2014).Google Scholar
Lee, J.-W., Seol, D.-J., Cho, A.-N., Park, N.-G., Adv. Mater. 26, 4991 (2014).Google Scholar
Wang, Q., Shao, Y., Dong, Q., Xiao, Z., Yuan, Y., Huang, J., Energy Environ. Sci. 7, 2359 (2014).CrossRefGoogle Scholar
Xiao, Z., Bi, C., Shao, Y., Dong, Q., Wang, Q., Yuan, Y., Wang, C., Gao, Y., Huang, J., Energy Environ. Sci. 7, 2619 (2014).CrossRefGoogle Scholar
Xiao, M., Huang, F., Huang, W., Dkhissi, Y., Zhu, Y., Etheridge, J., Gray-Weale, A., Bach, U., Cheng, Y.-B., Spiccia, L., Angew. Chem. Int. Ed. 126, 10056 (2014).Google Scholar
Yan, K., Long, M., Zhang, T., Wei, Z., Chen, H., Yang, S., Xu, J., J. Am. Chem. Soc. 137, 4460 (2015).Google Scholar
Zhang, W., Saliba, M., Moore, D.T., Pathak, S.K., Hörantner, M.T., Stergiopoulos, T., Stranks, S.D., Eperon, G.E., Alexander-Webber, J.A., Abate, A., Sadhanala, A., Yao, S., Chen, Y., Friend, R.H., Estroff, L.A., Wiesner, U., Snaith, H.J., Nat. Commun. 6, 6142 (2015).Google Scholar
Leyden, M.R., Ono, L.K., Raga, S.R., Kato, Y., Wang, S., Qi, Y., J. Mater. Chem. A 2, 18742 (2014).CrossRefGoogle Scholar
Stranks, S.D., Nayak, P.K., Zhang, W., Stergiopoulos, T., Snaith, H.J., Angew. Chem. Int. Ed. 54, 3240 (2015).Google Scholar
Song, T.-B., Chen, Q., Zhou, H., Jiang, C., Wang, H.-H., Yang, Y., Liu, Y., You, J., Yang, Y., J. Mater. Chem. A 3, 9032 (2015).CrossRefGoogle Scholar
Luo, P., Liu, Z., Xia, W., Yuan, C., Cheng, J., Lu, Y., ACS Appl. Mater. Interfaces 7, 2708 (2015).Google Scholar
Du, T., Wang, N., Chen, H., Lin, H., He, H., ACS Appl. Mater. Interfaces 7, 3382 (2015).Google Scholar
Zhu, W., Yu, T., Li, F., Bao, C., Gao, H., Yi, Y., Yang, J., Fu, G., Zhou, X., Zou, Z., Nanoscale 7, 5427 (2015).CrossRefGoogle Scholar
Hao, F., Stoumpos, C.C., Liu, Z., Chang, R.P.H., Kanatzidis, M.G., J. Am. Chem. Soc. 136, 16411 (2014).Google Scholar
You, J., Yang, Y., Hong, Z., Song, T.-B., Meng, L., Liu, Y., Jiang, C., Zhou, H., Chang, W.-H., Li, G., Yang, Y., Appl. Phys. Lett. 105, 183902 (2014).Google Scholar
Li, Y., Cooper, J.K., Buonsanti, R., Giannini, C., Liu, Y., Toma, F.M., Sharp, I.D., J. Phys. Chem. Lett. 6, 493 (2015).Google Scholar