Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-28T06:31:19.711Z Has data issue: false hasContentIssue false

Why Does Concrete Set?: The Nature of Cohesion Forces in Hardened Cement-Based Materials

Published online by Cambridge University Press:  31 January 2011

Get access

Abstract

Unlike other porous materials such as sandstone, brick, or porous glass, the interatomic bonding continuity of cement-based materials like concrete is far from obvious. When scrutinized at the micro- or nanoscopic level, the continuity of the ionic–covalent bonding in the solid phase is interrupted almost everywhere by water molecules or liquid water films. The same situation is found in set plaster.Yet, plaster and cementitious materials are able to withstand stresses of the same order of magnitude as rocks. Molecular simulation studies and direct-force measurements by atomic force microscopy provide strong arguments for predicting that short- and medium-range surface forces mediated by partially or totally hydrated calcium ions are the essential components of cement strength, with additional contributions from van der Waals and capillary forces. This provides a clue for understanding the nano- and mesostructure of cement-based materials and new levers for improving their properties.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Coulomb, C.A., Mém. de Math. de l'Acad. Royale des Sciences 7 (1773) p.343.Google Scholar
2Nedderman, R.M., Statics and Kinematics of Granular Materials (Cambridge University Press, Cambridge, UK, 1992) p.21.CrossRefGoogle Scholar
3Bocquet, L.Charlaix, E.Ciliberto, S. and Crassous, J., Nature 396 (1998) p.735.CrossRefGoogle Scholar
4Acker, P.Baroghel-Bouny, V., and Garcia, S. in Hydration and Setting, edited by Nonat, A.Mutin, J.C., and Baron, J. (RILEM, Cachan, France, 2000) p.23.Google Scholar
5Taylor, H.F.W.Cement Chemistry, 2nd ed. (Thomas Telford, London, 1997).CrossRefGoogle Scholar
6Garrault-Gauffinet, S. and Nonat, A.J. Cryst. Growth 200 (1999) p.565.CrossRefGoogle Scholar
7Chatelier, H. Le, Recherches expérimentales sur la constitution des mortiers hydrauliques (Dunod, Paris, 1904).Google Scholar
8Bentz, D.P., J. Am. Ceram. Soc. 80 (1997) p. 3.CrossRefGoogle Scholar
9Vicsek, T.Fractal Growth Phenomena (World Scientific, Singapore, 1992).CrossRefGoogle Scholar
10Powers, T.C., J.Am. Ceram. Soc. 41 (1958) p.1.CrossRefGoogle Scholar
11Nachbaur, L.Mutin, J.C., Choplin, L. and Nonat, A.Cem. Concr. Res. 31 (2001) p.183.CrossRefGoogle Scholar
12Lootens, D.Lécolier, E., Hébraud, P., and Damme, H. Van, Oil Gas Sci. Technol. 59 (2004) p. 31.CrossRefGoogle Scholar
13Nonat, A.Rev. Fr. Génie Civil 2 (1998) p.759.CrossRefGoogle Scholar
14Viehland, D.Li, J.F., Yuan, L.J., and Xu, Z.J.Am. Ceram. Soc. 79 (1996) p.1731.CrossRefGoogle Scholar
15Zhang, X.Chang, W.Zhang, T. and Ong, C.K., J.Am. Ceram. Soc. 83 (2000) p.2600.CrossRefGoogle Scholar
16For example, see Viehland, D.Li, J.F., Yuan, L.J., and Xu, Z.J. Am. Ceram. Soc. 79 (1996) p.1731; and I.G. Richardson, Cem. Concr. Res. 29 (1999) p.1131 and references therein.CrossRefGoogle Scholar
17Colombet, P.Grimmer, A.R., Zanni, H. and Sozzani, P. eds., Nuclear Magnetic Resonance Spectroscopy of Cement-Based Materials, Part II (Springer-Verlag, Berlin, 1998).CrossRefGoogle Scholar
18Hamid, S.A., Z.Kristallogr. 154 (1981) p.189.Google Scholar
19Merlino, S.Bonaccorsi, E. and Armbrumster, T.Eur. J.Mineral. 13 (2001) p.577.CrossRefGoogle Scholar
20Gauffinet, S.Finot, E.Lesniewska, E. and Nonat, A.Acad, C.R.. Sci. Paris Earth & Planetary Sci. 327 (1998) p.231.Google Scholar
21Maggion, R.Bonnamy, S.Levitz, P. and Damme, H. Van, in The Modelling of Microstructure and its Potential for Studying Transport Properties and Durability of Concrete, NATO ASI Series E, Vol. 304, edited by Jennings, H.Kropp, J. and Scrivener, K. (Kluwer Academic Publishing, Dordrecht, 1996) p.137.CrossRefGoogle Scholar
22Damme, H. Van, in Encyclopedia of Surface and Colloid Science, edited by Hubbard, A. (Marcel Dekker, New York, 2002) p.1087.Google Scholar
23Garrault-Gauffinet, S., Finot, E. and Nonat, A. in Hydration and Setting, edited by Nonat, A.Mutin, J.C. and Baron, J. (RILEM, Cachan, France, 2000) p.199.Google Scholar
24Gartner, E.M., Kurtis, K.E., and Monteiro, P.J.M., Cem. Concr. Res. 30 (2000) p.817.CrossRefGoogle Scholar
25For example, see Jennings, H.M., Hsieh, J., Srinivasan, R.Jaiswal, S.Garci, M.Sohn, D.Hinners, C.Heppner, S. and Neubauer, C. in The Modelling of Microstructure and its Potential for Studying Transport Properties and Durability of Concrete, NATO ASI Series E, Vol.304, edited by Jennings, H.Kropp, J. and Scrivener, K. (Kluwer Academic Publishing, Dordrecht, 1996) p.29.CrossRefGoogle Scholar
26Jennings, H.M., Cem. Concr. Res. 30 (2000) p.101.CrossRefGoogle Scholar
27Winslow, D.Bubowski, J. and Young, J.F., Cem. Concr. Res. 25 (1995) p.147.CrossRefGoogle Scholar
28Craievich, A.F., J.Appl. Crystallogr. 20 (1987) p.327.CrossRefGoogle Scholar
29Adenot, F.Auvray, L. and Touray, J.C., Acad, C.R.. Sci. Parisser. II 317 (1993) p.185.Google Scholar
30Plassais, A.Pomies, M.P., Lequeux, N.Boch, P.Korb, J.P., Petit, D. and Barberon, F.Magn. Res. Imag. 21 (2003) p.369CrossRefGoogle Scholar
31Gmira, A. PhD thesis, University of Orléans, 2003.Google Scholar
32Gmira, A.Zabat, M.Pellenq, R. and Damme, H. Van, Mater. & Struct., Concr. Sci. Eng. 37 (2004) p.3.Google Scholar
33Boumiz, A.Sorrentino, D.Vernet, C. and Tenoudji, F.C., in Hydration and Setting, edited by Nonat, A.Mutin, J.C., and Baron, J. (RILEM, Cachan, France, 2000) p.295.Google Scholar
34Martin, L.P., Lindgren, E.A., Rosen, M. and Sidhu, H.Mater. Sci. Eng., A 279 (2000) p.87.CrossRefGoogle Scholar
35Acker, P. in Creep, Shrinkage and Durability Mechanisms of Concrete and Other Quasi-Brittle Materials, edited by Ulm, F.-J.Bazant, Z. and Wittman, F. (Elsevier, Oxford, UK, 2001).Google Scholar
36Delville, A. and Pellenq, R.J.M.Mol. Simul. 24 (2000) p.1.CrossRefGoogle Scholar
37Guldbrand, L.Jönsson, B., Wennerström, H., and Linse, P.J.Chem. Phys. 80 (1984) p.2221.CrossRefGoogle Scholar
38Kjellander, R. and Marcelja, S.J.Phys. Chem. 90 (1986) p.1230.CrossRefGoogle Scholar
39Kjellander, R.Marcelja, S. and Quirk, J.P., J. Colloid Interface Sci. 126 (1988) p. 194.CrossRefGoogle Scholar
40Pellenq, R.J.M.Caillol, J.M., and Delville, A.J.Phys. Chem B 101 (1997) p.8584.CrossRefGoogle Scholar
41Pellenq, R.J.M.Delville, A. and Damme, H. Van, in Characterization of Porous Solids IV, edited by McEnaney, B.Mays, T.J., Rouquerol, J., Rodriguez-Reinoso, F., Sing, K.S.W. and Unger, K.K. (The Royal Society of Chemistry, Cambridge, U.K., 1997) p.596.Google Scholar
42Lesko, S.Lesniewska, E.Nonat, A.Mutin, J.C., and Goudonnet, J.P., Ultramicroscopy 86 (2001) p.11.CrossRefGoogle Scholar
43Gatty, L.Bonnamy, S.Feylessoufi, A.Cli-nard, C., Richard, P. and Damme, H. Van, J. Mater. Sci. 36 (2001) p. 4013.CrossRefGoogle Scholar
44Results virtually identical to Reference 35 were published during the preparation of this contribution: Constantinides, G. and Ulm, F.J., Cem. Concr. Res. 34 (2004) p. 67.CrossRefGoogle Scholar