Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-10T12:11:44.598Z Has data issue: false hasContentIssue false

Zeolitic Host–Guest Interactions and Building Blocks for the Self-Assembly of Complex Materials

Published online by Cambridge University Press:  31 March 2011

Get access

Abstract

Ordered nanoscale pore systems such as those represented by zeolites offer many opportunities for the design of complex functional systems via self-assembly.With their large internal surface areas and tunable, well-defined crystalline pore structures that allow molecular sieving and ion exchange, zeolites can be adapted for numerous applications. The nanoscale reactors present in zeolite pore systems have been explored as structural templates for the spatial organization of numerous guests. Examples from various fields are discussed, such as the stabilization of organic dyes for the construction of energy transfer and storage systems, the construction of host–guest hybrid catalyst systems, and the encapsulation of conducting or semiconducting nanoscale wires and clusters. More complex, hierarchical forms of nanostructured matter become accessible when zeolite crystals are used as building blocks for the selfassembly of thin films or three-dimensional objects. A combination of weaker and stronger interactions ranging from dispersive forces, hydrogen bonding, and electrostatic interactions to covalent bonding can be used to build functional hierarchical constructs. Several examples and novel applications of such systems will be discussed, including oriented channel systems, chemical sensors, and hierarchical pore systems for catalytic reactions.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Cundy, C.S. and Cox, P.A., Chem. Rev. 103 (2003) p. 663.CrossRefGoogle Scholar
2Soler-Illia, G.J. de, Sanchez, C., Lebeau, B., and Patarin, J., Chem. Rev. 102 (2002) p. 4093.CrossRefGoogle Scholar
3Stein, A., Adv. Mater. 15 (2003) p. 763.CrossRefGoogle Scholar
4Baerlocher, Ch. and McCusker, L.B., Database of Zeolite Structures, www.iza-structure.org/databases/ (accessed September 2005).Google Scholar
5Laeri, F., Schueth, F., Simon, U., and Wark, M., eds., Host-Guest Systems Based on Nanoporous Crystals (Wiley VCH, Weinheim, Germany, 2003).CrossRefGoogle Scholar
6Corma, A. and Davis, M.E., ChemPhysChem 5 (2004) p. 304.CrossRefGoogle Scholar
7Guzman, J. and Gates, B.C., Dalton Trans. (2003) p. 3303.Google Scholar
8Corma, A. and Garcia, H., Eur. J. Inorg. Chem. (2004) p. 1143.Google Scholar
9Ozin, G.A. and Ozkar, S., Chem. Mater. 4 (1992) p. 511.CrossRefGoogle Scholar
10Hanson, B.E., Davis, M.E., Taylor, D., and Rode, E., Inorg. Chem. 23 (1984) p. 52.CrossRefGoogle Scholar
11Li, F. and Gates, B.C., J. Phys. Chem. B 108 (2004) p. 11259.CrossRefGoogle Scholar
12Novakova, J., Kubelkova, L., Huelstede, P., Jaeger, N.I., and Schulz-Ekloff, G., J. Mol. Catal. A 111 (1996) p. 123.CrossRefGoogle Scholar
13Ogunwumi, S.B. and Bein, T., Chem. Commun. (1997) p. 901.Google Scholar
14Vos, D.E. De, Meinershagen, J.L., and Bein, T., Angew. Chem. Int. Ed. 35 (1996) p. 2211.CrossRefGoogle Scholar
15Vos, D. De and Bein, T., J. Am. Chem. Soc. 119 (1997) p. 9460.CrossRefGoogle Scholar
16Balkus, K.J. Jr., Eissa, M., and Levado, R., J. Am. Chem. Soc. 117 (1995) p. 10753.CrossRefGoogle Scholar
17Bruhwiler, D. and Calzaferri, G., Microporous Mesoporous Mater. 72 (2004) p. 1.CrossRefGoogle Scholar
18Payra, P. and Dutta, P.K., Microporous Mesoporous Mater. 64 (2003) p. 109.CrossRefGoogle Scholar
19Meinershagen, J.L. and Bein, T., J. Am. Chem. Soc. 121 (1999) p. 448.CrossRefGoogle Scholar
20Calzaferri, G., Huber, S., Maas, H., and Minkowski, C., Angew. Chem. Int. Ed. 42 (2003) p. 3732.CrossRefGoogle Scholar
21Huber, S. and Calzaferri, G., Angew. Chem. Int. Ed. 43 (2004) p. 6738.CrossRefGoogle Scholar
22Bossart, O., L. De Cola, Welter, S., and Calzaferri, G., Chem. Eur. J. 10 (2004) p. 5771.CrossRefGoogle Scholar
23Ban, T., Bruehwiler, D., and Calzaferri, G., J. Phys. Chem. B 108 (2004) p. 16348.CrossRefGoogle Scholar
24Kincaid, J.R., Chem. Eur. J. 6 (2000) p. 4055.3.0.CO;2-G>CrossRefGoogle Scholar
25Dutta, P.K. and Kim, Y., Curr. Opin. Solid State Mater. Sci. 7 (2003) p. 483.CrossRefGoogle Scholar
26Szulbinski, W.S., Manuel, D.J., and Kincaid, J.R., Inorg. Chem. 40 (2001) p. 3443.CrossRefGoogle Scholar
27Bhuiyan, A.A. and Kincaid, J R., Inorg. Chem. 40 (2001) p. 4464.CrossRefGoogle Scholar
28Sykora, M., Maruszewski, K., Treffert-Ziemelis, S.M., and Kincaid, J.R., J. Am. Chem. Soc. 120 (1998) p. 3490.CrossRefGoogle Scholar
29Sykora, M. and Kincaid, J.R., Nature 387 (1997) p. 162.CrossRefGoogle Scholar
30Kim, Y. and Dutta, P.K., Res. Chem. Intermed. 30 (2004) p. 147.CrossRefGoogle Scholar
31Kim, Y., Das, A., Zhang, H., and Dutta, P.K., J. Phys. Chem. B 109 (2005) p. 6929.CrossRefGoogle Scholar
32Kim, Y.I., Keller, S.W., Krueger, J.S., Yonemoto, E.H., Saupe, G.B., and Mallouk, T.E., J. Phys. Chem. B 101 (1997) p. 2491.CrossRefGoogle Scholar
33Schomburg, C., Wark, M., Rohlfing, Y., Schulz-Ekloff, G., and Wohrle, D., J. Mater. Chem. 11 (2001) p. 2014.CrossRefGoogle Scholar
34Weh, K., Noack, M., Hoffmann, K., Schroder, K.-P., and Caro, J., Microporous Mesoporous Mater. 54 (2002) p. 15.CrossRefGoogle Scholar
35Weiss, O., Loerke, J., Wuestefeld, U., Marlow, F., and Schueth, F., J. Solid State Chem. 167 (2002) p. 302.CrossRefGoogle Scholar
36Vietze, U., Krauss, O., Laeri, F., Ihlein, G., Schuth, F., Limburg, B., and Abraham, M., Phys. Rev. Lett. 81 (1998) p. 4628.CrossRefGoogle Scholar
37Cox, S.D., Gier, T.E., and Stucky, G.D., Chem. Mater. 2 (1990) p. 609.CrossRefGoogle Scholar
38Gao, F., Zhu, G., Chen, Y., Li, Y., and Qiu, S., J. Phys. Chem. B 108 (2004) p. 3426.CrossRefGoogle Scholar
39Kim, H.S., Lee, S.M., Ha, K., Jung, C., Lee, Y.-J., Chun, Y.S., Kim, D., Rhee, B.K., and Yoon, K.B., J. Am. Chem. Soc. 126 (2004) p. 673.CrossRefGoogle Scholar
40Alexeev, O. and Gates, B.C., Topics Catal. 10 (2000) p. 273.CrossRefGoogle Scholar
41Alexeev, O.S. and Gates, B.C., Ind. Eng. Chem. Res. 42 (2003) p. 1571.CrossRefGoogle Scholar
42Bruyn, M. De, Coman, S., Bota, R., Parvulescu, V.I., Vos, D.E. De, and Jacobs, P.A., Angew. Chem. Int. Ed. 42 (2003) p. 5333.CrossRefGoogle Scholar
43Riahi, G., Guillemot, D., Polisset-Thfoin, M., Khodadadi, A.A., and Fraissard, J., Catal. Today 72 (2002) p. 115.CrossRefGoogle Scholar
44Djakovitch, L. and Koehler, K., J. Am. Chem. Soc. 123 (2001) p. 5990.CrossRefGoogle Scholar
45Readman, J.E., Barker, P.D., Gameson, I., Hriljac, J.A., Zhou, W., Edwards, P.P., and Anderson, P.A., Chem. Commun. (2004) p. 736.Google Scholar
46Ikeda, T., Kodaira, T., Izumi, F., Ikeshoji, T., and Oikawa, K., J. Phys. Chem. B 108 (2004) p. 17709.CrossRefGoogle Scholar
47Bowes, C.L., Malek, A., and Ozin, G.A., Chem. Vapor Deposition 2 (1996) p. 97.CrossRefGoogle Scholar
48He, J., Ba, Y., Ratcliffe, C.I., Ripmeester, J.A., Klug, D.D., Tse, J.S., and Preston, K.F., J. Am. Chem. Soc. 120 (1998) p. 10697.CrossRefGoogle Scholar
49Ba, Y., He, J., Ratcliffe, C.I., and Ripmeester, J.A., J. Am. Chem. Soc. 121 (1999) p. 8387.CrossRefGoogle Scholar
50Corrent, S., Cosa, G., Scaiano, J.C., Galletero, M.S., Alvaro, M., and Garcia, H., Chem. Mater. 13 (2001) p. 715.CrossRefGoogle Scholar
51Okamoto, Y., Oshima, N., Kobayashi, Y., Terasaki, O., Kodaira, T., and Kubota, T., Phys. Chem. Chem. Phys. 4 (2002) p. 2852.CrossRefGoogle Scholar
52Ozin, G.A., Prokopowicz, R.A., and Ozkar, S., J. Am. Chem. Soc. 114 (1992) p. 8953.CrossRefGoogle Scholar
53Moller, K., Bein, T., Ozkar, S., and Ozin, G.A., J. Phys. Chem. 95 (1991) p. 5276.CrossRefGoogle Scholar
54Leiggener, C., Bruehwiler, D., and Calzaferri, G., J. Mater. Chem. 13 (2003) p. 1969.CrossRefGoogle Scholar
55Leiggener, C. and Calzaferri, G., ChemPhysChem 5 (2004) p. 1593.CrossRefGoogle Scholar
56Moller, K., Eddy, M.M., Stucky, G.D., Herron, N., and Bein, T., J. Am. Chem. Soc. 111 (1989) p. 2564.CrossRefGoogle Scholar
57Herron, N., Wang, Y., Eddy, M.M., Stucky, G.D., Cox, D.E., Moller, K., and Bein, T., J. Am. Chem. Soc. 111 (1989) p. 530.CrossRefGoogle Scholar
58MacDougall, J.E., Eckert, H., Stucky, G.D., Herron, N., Wang, Y., Moller, K., Bein, T., and Cox, D., J. Am. Chem. Soc. 111 (1989) p. 8006.CrossRefGoogle Scholar
59Cardin, D.J., Adv. Mater. 14 (2002) p. 553.3.0.CO;2-F>CrossRefGoogle Scholar
60Cox, S.D. and Stucky, G.D., J. Phys. Chem. 95 (1991) p. 710.CrossRefGoogle Scholar
61Esnouf, S., Beuneu, F., Mory, J., Zuppiroli, L., Enzel, P., and Bein, T., J. Chim. Phys. Phys.-Chim. Biol. 89 (1992) p. 1137.CrossRefGoogle Scholar
62Zuppiroli, L., Beuneu, F., Mory, J., Enzel, P., and Bein, T., Synth. Met. 57 (1993) p. 5081.CrossRefGoogle Scholar
63Esnouf, S., Beuneu, F., Enzel, P., and Bein, T., Phys. Rev. B: Condens. Matter 56 (1997) p. 12899.CrossRefGoogle Scholar
64Choi, S.Y., Lee, Y.-J., Park, Y.S., Ha, K., and Yoon, K.B., J. Am. Chem. Soc. 122 (2000) p. 5201.CrossRefGoogle Scholar
65Chun, Y.S., Ha, K., Lee, Y.-J., Lee, J.S., Kim, H.S., Park, Y.S., and Yoon, K.B., Chem. Commun. (2002) p. 1846.Google Scholar
66Ha, K., Lee, Y.-J., Lee, H.J., and Yoon, K.B., Adv. Mater. 12 (2000) p. 1114.3.0.CO;2-5>CrossRefGoogle Scholar
67Ha, K., Lee, Y.-J., Jung, D.-Y., Lee, J.H., and Yoon, K.B., Adv. Mater. 12 (2000) p. 1614.3.0.CO;2-H>CrossRefGoogle Scholar
68Park, J.S., Lee, G.S., Lee, Y.-J., Park, Y.S., and Yoon, K.B., J. Am. Chem. Soc. 124 (2002) p. 13366.CrossRefGoogle Scholar
69Lee, G.S., Lee, Y.-J., and Yoon, K.B., J. Am. Chem. Soc. 123 (2001) p. 9769.CrossRefGoogle Scholar
70Lin, J.-C., Yates, M.Z., Petkoska, T., and Jacobs, S., Adv. Mater. 16 (2004) p. 1944.CrossRefGoogle Scholar
71Ke, C., Ni, Z., Wang, Y.J., Tang, Y., Gu, Y., Gao, Z., and Yang, W.L., Chem. Commun. (2001) p. 783.Google Scholar
72Feng, S. and Bein, T., Science 265 (1994) p. 1839.CrossRefGoogle Scholar
73Feng, S. and Bein, T., Nature 368 (1994) p. 834.CrossRefGoogle Scholar
74Feng, S. and Bein, T., NATO ASI Ser., Ser. C 499 (1997) p. 335.Google Scholar
75Lee, J.S., Lee, Y.-J., Tae, E.L., Park, Y.S., and Yoon, K.B., Science 301 (2003) p. 818.CrossRefGoogle Scholar
76Lee, J.S., Lee, Y.-J., Tae, E.L., Park, Y.S., and Yoon, K.B., in Nanoscale Materials and Modeling— Relations among Processing, Microstructure, and Mechanical Properties, edited by Anderson, P.M., Foecke, T., Misra, A., and Rudd, R.E. (Mater. Res. Soc. Symp. Proc. 821, Warrendale, PA, 2004) p. 129.Google Scholar
77Aoki, K. and Mann, S., J. Mater. Chem. 15 (2005) p. 111.CrossRefGoogle Scholar
78Mintova, S., Schoeman, B., Valtchev, V., Sterte, J., Mo, S., and Bein, T., Adv. Mater. 9 (1997) p. 585.Google Scholar
79Yan, Y. and Bein, T., J. Am. Chem. Soc. 117 (1995) p. 9990.CrossRefGoogle Scholar
80Mintova, S., Mo, S., and Bein, T., Chem. Mater. 13 (2001) p. 901.CrossRefGoogle Scholar
81Mintova, S. and Bein, T., Microporous Mesoporous Mater. 50 (2001) p. 159.CrossRefGoogle Scholar
82Decher, G., Eckle, M., Schmitt, J., and Struth, B., Curr. Opin. Colloid Interface Sci. 3 (1998) p. 32.CrossRefGoogle Scholar
83Valtchev, V. and Mintova, S., Microporous Mesoporous Mater. 43 (2001) p. 41.CrossRefGoogle Scholar
84Naik, S.P., Chiang, A.S.T., Thompson, R.W., and Huang, F.C., Chem. Mater. 15 (2003) p. 787.CrossRefGoogle Scholar
85Liu, Y. and Pinnavaia, T.J., J. Mater. Chem. 14 (2004) p. 1099.CrossRefGoogle Scholar
86Han, Y., Wu, S., Sun, Y., Li, D., Xiao, F.-S., Liu, J., and Zhang, X., Chem. Mater. 14 (2002) p. 1144.CrossRefGoogle Scholar
87Han, Y., Li, N., Zhao, L., Li, D., Xu, X., Wu, S., Di, Y., Li, C., Zou, Y., Yu, Y., and Xiao, F.-S., J. Phys. Chem. B 107 (2003) p. 7551.CrossRefGoogle Scholar
88Aerts, A., Isacker, A. van, Huybrechts, W., Kremer, S.P.B., Kirschhock, C.E.A., Collignon, F., Houthoofd, K., Denayer, J.F.M., Baron, G.V., Marin, G.B., Jacobs, P.A., and Martens, J.A., Appl. Catal. A 257 (2004) p. 7.CrossRefGoogle Scholar
89Zhu, G., Qiu, S., Gao, F., Li, D., Li, Y., Wang, R., Gao, B., Li, B., Guo, Y., Xu, R., Liu, Z., and Terasaki, O., J. Mater. Chem. 11 (2001) p. 1687.CrossRefGoogle Scholar
90Wang, Y. and Caruso, F., Adv. Funct. Mater. 14 (2004) p. 1012.CrossRefGoogle Scholar