Hostname: page-component-78c5997874-s2hrs Total loading time: 0 Render date: 2024-11-10T08:03:25.113Z Has data issue: false hasContentIssue false

Tunable indium tin oxide for metamaterial perfect absorbers and nonlinear devices

Published online by Cambridge University Press:  24 August 2020

Evan M. Smith*
Affiliation:
KBR, 2601 Mission Point Blvd, Beavercreek, OH45431, USA
Joshua R. Hendrickson
Affiliation:
Air Force Research Laboratory, Sensors Directorate, Wright-Patterson Air Force Base, OH 45433, USA
Justin W. Cleary
Affiliation:
Air Force Research Laboratory, Sensors Directorate, Wright-Patterson Air Force Base, OH 45433, USA
Kevin Leedy
Affiliation:
Air Force Research Laboratory, Sensors Directorate, Wright-Patterson Air Force Base, OH 45433, USA
Junpeng Guo
Affiliation:
Department of Electrical and Computer Engineering, University of Alabama in Huntsville, Huntsville, AL35899, USA
Shivashankar Vangala
Affiliation:
Air Force Research Laboratory, Sensors Directorate, Wright-Patterson Air Force Base, OH 45433, USA
*
Address all correspondence to Evan M. Smith at evan.smith@us.kbr.com
Get access

Abstract

Indium tin oxide (ITO) has become a very useful plasmonic and nonlinear optical material because of its highly tunable electrical and optical properties and strong optical nonlinearity. In this work, the authors conducted detailed fabrication process studies by using high-temperature reactive sputtering to finely tune the optical properties of ITO thin films, particularly the epsilon-near-zero (ENZ) wavelength in the near and mid-IR spectrum. Sputtered ITO thin films are characterized by using spectroscopic ellipsometry, surface profilometry, Hall measurements, and 4-point probe testing. Additionally, the effect of post-deposition annealing of ITO films is also investigated.

Type
Research Letters
Copyright
Copyright © The Author(s), 2020, published on behalf of Materials Research Society by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Shrestha, S., Wang, Y., Overvig, A.C., Lu, M., Stein, A., Dal Negro, L., and Yu, N.: Indium tin oxide broadband metasurface absorber. ACS Photonics 5, 35263533 (2018).10.1021/acsphotonics.8b00781CrossRefGoogle Scholar
Yi, F., Shim, E., Zhu, A.Y., Zhu, H., Reed, J.C., and Cubukcu, E.: Voltage tuning of plasmonic absorbers by indium tin oxide. Appl. Phys. Lett. 102, 221102 (2013).CrossRefGoogle Scholar
Hendrickson, J.R., Vangala, S., Dass, C., Gibson, R., Goldsmith, J., Leedy, K., Walker, D.E. Jr, Cleary, J.W., Kim, W., and Guo, J.: Coupling of epsilon-near-zero mode to gap plasmon mode for flat-top wideband perfect light absorption. ACS Photonics 5, 776781 (2018).10.1021/acsphotonics.7b01491CrossRefGoogle Scholar
Chen, J., Smith, E.M., Cleary, J.W., Dass, C., Reed, A., Vangala, S., Hendrickson, J.R., and Guo, J.: Wideband absorbing nonlinear optical metamaterials using coupled epsilon-near-zero mode. META 2019 Conference Proceeding, Lisbon, Portugal, 2019; pp. 1637–1638.Google Scholar
Yoon, J., Zhou, M., Badsha, M.A., Kim, T.Y., Jun, Y.C., and Hwangbo, C.K.: Broadband epsilon-near-zero perfect absorption in the near-infrared. Sci. Rep. 5, 12788 (2015).10.1038/srep12788CrossRefGoogle ScholarPubMed
Liu, X., Zang, K., Kang, J.H., Park, J., Harris, J.S., Kik, P.G., and Brongersma, M.L.: Epsilon-near-zero Si slot-waveguide modulator. ACS Photonics 5, 44844490 (2018).CrossRefGoogle Scholar
Shirmanesh, G.K., Sokhoyan, R., Pala, R.A., and Atwater, H.A.: Dual-gated active metasurface at 1550 nm with wide (>300°) phase tunability. Nano Lett. 18, 29572963 (2018).10.1021/acs.nanolett.8b00351CrossRefGoogle Scholar
Kelley, M., Lee, A., Mozumdar, M., Dajani, K., and Ahmed, A.: Design and modeling of sub-picosecond all-optical modulation using the nonlinear response of indium tin oxide. JOSA B 36, F149F153 (2019).CrossRefGoogle Scholar
Liu, C., Pang, K., Manukyan, K., Reshef, O., Zhou, Y., Patrow, J., Pennathur, A., Song, H., Zhao, Z., Zhang, R., Alishahi, F., Fallahpour, A., Cao, Y., Almaiman, A., Dawlaty, J.M., Chaitanya, N.A., De Leon, I., Alam, M.Z., Boyd, R.W., Tur, M., and Wilner, A.E.: Resonance splitting and enhanced optical nonlinearities in ITO-based epsilon-near-zero metasurface with cross-shaped nanoantennas. Conference on Lasers and Electro-Optics, OSA Technical Digest, Optical Society of America, 2019; Paper FW4B.5.CrossRefGoogle Scholar
Alam, M., De Leon, I., and Boyd, R.: Large optical nonlinearity of indium tin oxide in its epsilon-near-zero region. Science 352, 795797 (2016).10.1126/science.aae0330CrossRefGoogle ScholarPubMed
Dass, C.K., Kwon, H., Vangala, S., Smith, E.M., Cleary, J.W., Guo, J., Alu, A., and Hendrickson, J.R.: Gap plasmon enhanced second harmonic generation in epsilon-near-zero nanolayers. ACS Photonics 7, 174179 (2020).CrossRefGoogle Scholar
Capretti, A., Wang, Y., Engheta, N., and Dal Negro, L.: Comparative study of second-harmonic generation from epsilon-near-zero indium tin oxide and titanium nitride nanolayers excited in the near-infrared spectral range. ACS Photonics 2, 15841591 (2015).CrossRefGoogle Scholar
Wang, Y., Overvig, A.C., Shrestha, S., Zhang, R., Wang, R., Yu, N., and Dal Negro, L.: Tunability of indium tin oxide materials for mid-infrared plasmonic applications. Opt. Mater. Express 7, 27272739 (2017).10.1364/OME.7.002727CrossRefGoogle Scholar
Gui, Y., Miscuglio, M., Ma, Z., Tahersima, M., Sun, S., Amin, R., Dalir, H., and Sorger, V.: Towards integrated metatronics: a holistic approach on precise optical and electrical properties of indium tin oxide. Sci. Rep. 9, 11279 (2019).CrossRefGoogle ScholarPubMed
Cleary, J.W., Smith, E.M., Leedy, K.D., Grzybowski, G., and Guo, J.: Optical and electrical properties of ultra-thin indium tin oxide nanofilms on silicon for infrared photonics. Opt. Mater. Express 8, 12311245 (2018).CrossRefGoogle Scholar