Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-10T05:11:18.216Z Has data issue: false hasContentIssue false

Effect of intermittent oxygen exposure on chemical vapor deposition of graphene

Published online by Cambridge University Press:  09 October 2017

Selcuk Temiz
Affiliation:
Materials Science and Engineering Program, University of California, Riverside, CA 92521, USA
Zafer Mutlu
Affiliation:
Materials Science and Engineering Program, University of California, Riverside, CA 92521, USA
Sina Shahrezaei
Affiliation:
Materials Science and Engineering Program, University of California, Riverside, CA 92521, USA
Mihrimah Ozkan
Affiliation:
Materials Science and Engineering Program, University of California, Riverside, CA 92521, USA Department of Electrical and Computer Engineering, University of California, Riverside, CA 92521, USA
Cengiz S. Ozkan*
Affiliation:
Materials Science and Engineering Program, University of California, Riverside, CA 92521, USA Department of Mechanical Engineering, University of California, Riverside, CA 92521, USA
*
Address all correspondence to Cengiz S. Ozkan at cozkan@engr.ucr.edu
Get access

Abstract

Chemical vapor deposition is the most proficient method for growing graphene on copper foils due to its scalability, repeatability, and uniformity, etc. Herein, we systematically study the effect of oxygen (O2) exposure on graphene growth. We introduced O2 before and during the growth, and then studied its effects on the morphology, crystallinity, and nucleation density of graphene. We observe that introducing O2 during growth significantly improves the graphene crystallinity while pre-dosing O2 before growth reduces the graphene nucleation density. These studies suggest that intermittent O2 exposure play a significant role in graphene growth, enabling scalable production of high-quality graphene.

Type
Research Letters
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Wallace, P.R.: The band theory of graphite. Phys. Rev. 71, 622 (1947).CrossRefGoogle Scholar
2. Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Zhang, Y., Dubonos, S.V., Grigorieva, I.V., and Firsov, A.A.: Electric field effect in atomically thin carbon films. Science 306, 666 (2004).CrossRefGoogle ScholarPubMed
3. Ziegler, K.: Robust transport properties in graphene. Phys. Rev. Lett. 97, 266802 (2006).Google Scholar
4. Sarma, S.D., Adam, S., Hwang, E.H., and Rossi, E.: Electronic transport in two-dimensional graphene. Rev. Mod. Phys. 83, 407 (2011).CrossRefGoogle Scholar
5. Shishir, R.S. and Ferry, D.K.: Intrinsic mobility in graphene. J. Phys., Condens. Matter. 21, 232204 (2009).CrossRefGoogle ScholarPubMed
6. Banszerus, L., Schmitz, M., Engels, S., Dauber, J., Oellers, M., Haupt, F., Watanabe, K., Taniguchi, T., Beschoten, B., and Stampfer, C.: Ultrahigh-mobility graphene devices from chemical vapor deposition on reusable copper. Sci. Adv. 1, e1500222 (2015).CrossRefGoogle ScholarPubMed
7. Zandiatashbar, A., Lee, G.-H., An, S.J., Lee, S., Mathew, N., Terrones, M., Hayashi, T., Picu, C.R., Hone, J., and Koratkar, N.: Effect of defects on the intrinsic strength and stiffness of graphene. Nat. Commun. 5, 3186 (2014).CrossRefGoogle ScholarPubMed
8. Li, X., Colombo, L., and Ruoff, R.S.: Synthesis of graphene films on copper foils by chemical vapor deposition. Adv. Mater. 28, 6247 (2016).Google Scholar
9. Emtsev, K.V., Bostwick, A., Horn, K., Jobst, J., Kellogg, G.L., Ley, L., McChesney, J.L., Ohta, T., Reshanov, S.A., Röhrl, J., Rotenberg, E., Schmid, A.K., Waldmann, D., Weber, H.B., and Seyller, T.: Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mater. 8, 203 (2009).CrossRefGoogle ScholarPubMed
10. Li, D., Müller, M.B., Gilje, S., Kaner, R.B., and Wallace, G.G.: Processable aqueous dispersions of graphene nanosheets. Nat. Nanotechnol. 3, 101 (2008).Google Scholar
11. Su, C.Y., Lu, A.Y., Xu, Y., Chen, F.R., Khlobystov, A.N., and Li, L.J.: High-quality thin graphene films from fast electrochemical exfoliation. ACS Nano 5, 2332 (2011).CrossRefGoogle ScholarPubMed
12. Han, G.H., Gunes, F., Bae, J.J., Kim, E.S., Chae, S.J., Shin, H.J., Choi, J.Y., Pribat, D., and Lee, Y.H.: Influence of copper morphology in forming nucleation seeds for graphene growth. Nano Lett. 11, 4144 (2011).Google Scholar
13. Vlassiouk, I., Smirnov, S., Regmi, M., Surwade, S.P., Srivastava, N., Feenstra, R., Eres, G., Parish, C., Lavrik, N., Datskos, P., Dai, S., and Fulvio, P.: Graphene nucleation density on copper: fundamental role of background pressure. J. Phys. Chem. C 117, 18919 (2013).CrossRefGoogle Scholar
14. Zhao, P., Cheng, Y., Zhao, D., Yin, K., Zhang, X., Song, M., Yin, S., Song, Y., Wang, P., Wang, M., Xia, Y., and Wang, H.: The role of hydrogen in oxygen-assisted chemical vapor deposition growth of millimeter-sized graphene single crystals. Nanoscale 8, 7646 (2016).Google Scholar
15. Hao, Y., Bharathi, M.S., Wang, L., Liu, Y., Chen, H., Nie, S., Wang, X., Chou, H., Tan, C., Fallahazad, B., Ramanarayan, H., Magnuson, C.W., Tutuc, E., Yakobson, B.I., McCarty, K.F., Zhang, Y.W., Kim, P., Hone, J., Colombo, L., and Ruoff, R.S.: The role of surface oxygen in the growth of large single-crystal graphene on copper. Science 342, 720 (2013).CrossRefGoogle ScholarPubMed
16. Kim, S.M., Hsu, A., Lee, Y.H., Dresselhaus, M., Palacios, T., Kim, K.K., and Kong, J.: The effect of copper pre-cleaning on graphene synthesis. Nanotechnology 24, 365602 (2013).CrossRefGoogle ScholarPubMed
17. Wang, Y., Zheng, Y., Xu, X., Dubuisson, E., Bao, Q., Lu, J., and Loh, K.P.: Electrochemical delamination of CVD-grown graphene film: toward the recyclable use of copper catalyst. ACS Nano 5, 9927 (2011).CrossRefGoogle ScholarPubMed
18. Ferrari, A.C.: Raman spectroscopy of graphene and graphite: disorder, electron–phonon coupling, doping and nonadiabatic effects. Solid State Commun. 143, 47 (2007).Google Scholar
19. Wang, Y.Y., Ni, Z.H., Yu, T., Shen, Z.X., Wang, H.M., Wu, Y.H., Chen, W., and Wee, A.T.S.: Raman studies of monolayer graphene: the substrate effect. J. Phys. Chem. C 112, 10637 (2008).Google Scholar
20. Malard, L.M., Pimenta, M.A.A., Dresselhaus, G., and Dresselhaus, M.S.: Raman spectroscopy in graphene. Phys. Rep. 473, 51 (2009).Google Scholar
21. Mutlu, Z., Shahrezaei, S., Temiz, S., Ozkan, M., and Ozkan, C.S.: Facile synthesis and characterization of two dimensional layered tin disulfide nanowalls. J. Electron. Mater. 45, 2115 (2016).Google Scholar
22. Kim, K., Coh, S., Tan, L.Z., Regan, W., Yuk, J.M., Chatterjee, E., Crommie, M.F., Cohen, M.L., Louie, S.G., and Zettl, A.: Raman spectroscopy study of rotated double-layer graphene: misorientation-angle dependence of electronic structure. Phys. Rev. Lett. 108, 246103 (2012).Google Scholar
23. Mutlu, Z., Wu, R.J., Wickramaratne, D., Shahrezaei, S., Liu, C., Temiz, S., Patalano, A., Ozkan, M., Lake, R.K., Mkhoyan, K.A., and Ozkan, C.S.: Phase engineering of 2D tin sulfides. Small 12, 2998 (2016).Google Scholar
24. Mutlu, Z., Ruiz, I., Wu, R., Ionescu, R., Shahrezaei, S., Temiz, S., Ozkan, M., Mkhoyan, A.K., and Ozkan, C. S.: Chemical vapor deposition of partially oxidized graphene. RSC Adv. 7, 32209 (2017).CrossRefGoogle Scholar
25. Childres, I., Jauregui, L.A., Park, W., Cao, H., and Chen, Y.P.: Raman spectroscopy of graphene and related materials. In New Developments in Photon and Materials Research, edited by Jang, J.I. (Nova Science, 2013), pp. 120.Google Scholar
26. Ni, Z., Wang, Y., Yu, T., and Shen, Z.: Raman spectroscopy and imaging of graphene. Nano Res. 1, 273 (2008).Google Scholar
27. Ferrah, D., Renault, O., Petit-Etienne, C., Okuno, H., Berne, C., Bouchiat, V., and Cunge, G.: XPS investigations of graphene surface cleaning using H2- and Cl2-based inductively coupled plasma. Surf. Interface Anal. 48, 451 (2016).Google Scholar
Supplementary material: PDF

Temiz et al supplementary material

Temiz et al supplementary material 1

Download Temiz et al supplementary material(PDF)
PDF 914.1 KB