Hostname: page-component-78c5997874-s2hrs Total loading time: 0 Render date: 2024-11-10T05:38:40.325Z Has data issue: false hasContentIssue false

A first-principles study of potassium insertion in crystalline vanadium oxide phases as possible potassium-ion battery cathode materials

Published online by Cambridge University Press:  09 October 2017

Daniel Koch
Affiliation:
Department of Mechanical Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117576, Singapore
Vadym V. Kulish
Affiliation:
Department of Mechanical Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117576, Singapore
Sergei Manzhos*
Affiliation:
Department of Mechanical Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117576, Singapore
*
Address all correspondence to Sergei Manzhos at mpemanzh@nus.edu.sg
Get access

Abstract

Four different vanadium oxide phases [α-vanadium pentoxide (V2O5), β-V2O5, bronze-type vanadium dioxide [VO2(B)], and rutile-type VO2 [VO2(R)])] are investigated from first principles as potential electrode materials for potassium (K) ion batteries. Specifically, insertion energetics and diffusion barriers are computed. These phases are known as promising cathode materials for other types of metal ion batteries. Our results show that the metastable β-V2O5 provides the lowest (strongest) insertion energies for K and the lowest diffusion barriers compared with orthorhombic α-V2O5, VO2(B), and VO2(R). While three of these phases show energetically favorable potassiation and relatively small diffusion barriers, VO2(R) is predicted to be incapable of electrochemical K incorporation.

Type
Research Letters
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Wedepohl, K.H.: The composition of the continental crust. Geochim. Cosmochim. Acta 59, 1217 (1995).Google Scholar
2. Marcus, Y.: Thermodynamic functions of transfer of single ions from water to nonaqueous and mixed solvents: part 3—standard potentials of selected electrodes. Pure Appl. Chem. 57, 1129 (1985).Google Scholar
3. Komaba, S., Hasegawa, T., Dahbi, M., and Kubota, K.: Potassium intercalation into graphite to realize high-voltage/high-power potassium-ion batteries and potassium-ion capacitors. Electrochem. Commun. 60, 172 (2015).Google Scholar
4. Shannon, R.D.: Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. Sect. A 32, 751 (1976).Google Scholar
5. Eftekhari, A., Jian, Z., and Ji, X.: Potassium secondary batteries. ACS Appl. Mater. Interfaces 9, 4404 (2017).CrossRefGoogle ScholarPubMed
6. Share, K., Cohn, A.P., Carter, R., Rogers, B., and Pint, C.L.: Role of nitrogen-doped graphene for improved high-capacity potassium ion battery anodes. ACS Nano 10, 9738 (2016).Google Scholar
7. Chen, Y., Luo, W., Carter, M., Zhou, L., Dai, J., Fu, K., Lacey, S., Li, T., Wan, J., Han, X., Bao, Y., and Hu, L.: Organic electrode for non-aqueous potassium-ion batteries. Nano Energy 18, 205 (2015).CrossRefGoogle Scholar
8. Jian, Z., Liang, Y., Rodríguez-Pérez, I.A., Yao, Y., and Ji, X.: Poly(anthraquinonyl sulfide) cathode for potassium-ion batteries. Electrochem. Commun. 71, 5 (2016).Google Scholar
9. Vaalma, C., Giffin, G.A., Buchholz, D., and Passerini, S.: Non-aqueous K-ion battery based on layered K0.3MnO2 and hard carbon/carbon black. J. Electrochem. Soc. 163, A1295 (2016).Google Scholar
10. Wessells, C.D., Peddada, S.V., Huggins, R.A., and Cui, Y.: Nickel hexacyanoferrate nanoparticle electrodes for aqueous sodium and potassium ion batteries. Nano Lett.. 11, 5421 (2011).CrossRefGoogle ScholarPubMed
11. Xue, L., Li, Y., Gao, H., Zhou, W., , X., Kaveevivitchai, W., Manthiram, A., and Goodenough, J.B.: Low-cost high-energy potassium cathode. J. Am. Chem. Soc. 139, 2164 (2017).Google Scholar
12. Wu, X., Jian, Z., Li, Z., and Ji, X.: Prussian white analogues as promising cathode for non-aqueous potassium-ion batteries. Electrochem. Commun. 77, 54 (2017).Google Scholar
13. Han, J., Li, G.-N., Liu, F., Wang, M., Zhang, Y., Hu, L., Daiab, C., and Xu, M.: Investigation of K3V2(PO4)3/C nanocomposites as high-potential cathode materials for potassium-ion batteries. Chem. Commun. 53, 1805 (2017).Google Scholar
14. Lee, S., Sun, X.-G., Lubimtsev, A.A., Gao, X., Ganesh, P., Ward, T.Z., Eres, G., Chisholm, M.F., Dai, S., and Lee, H.N.: Persistent electrochemical performance in epitaxial VO2(B). Nano Lett. 17, 2229 (2017).CrossRefGoogle Scholar
15. Yamada, H., Tagawa, K., Komatsu, M., Moriguchi, I., and Kudo, T.: High power battery electrodes using nanoporous V2O5/carbon composites. J. Phys. Chem. C 111, 8397 (2007).Google Scholar
16. Raju, V., Rains, J., Gates, C., Luo, W., Wang, X., Stickle, W.F., Stucky, G.D., and Ji, X.: Superior cathode of sodium-ion batteries: orthorhombic V2O5 nanoparticles generated in nanoporous carbon by ambient hydrolysis deposition. Nano Lett. 14, 4119 (2014).CrossRefGoogle ScholarPubMed
17. Muller-Bouvet, D., Baddour-Hadjean, R., Tanabe, M., Huynh, L.T.N., Le, M.L.P., and Pereira-Ramos, J.P.: Electrochemically formed α’-NaV2O5: a new sodium intercalation compound. Electrochim. Acta 176, 586 (2015).Google Scholar
18. Tepavcevic, S., Xiong, H., Stamenkovic, V.R., Zuo, X., Balasubramanian, M., Prakapenka, V.B., Johnson, C.S., and Rajh, T.: Nanostructured bilayered vanadium oxide electrodes for rechargeable sodium-ion batteries. ACS Nano 6, 530 (2012).Google Scholar
19. Yan, B., Li, X., Bai, Z., Lin, L., Chen, G., Song, X., Xiong, D., Lic, D., and Sun, X.: Superior sodium storage of novel VO2 nano-microspheres encapsulated into crumpled reduced graphene oxide. J. Mater. Chem. A 5, 4850 (2017).Google Scholar
20. Mjejri, I., Etteyeb, N., Somrani, S., and Sediri, F.: Tetragonal pencil-like VO2(R) as electrode materials for high-performance redox activities. Ceram. Int. 42, 6121 (2016).Google Scholar
21. Kulish, V., and Manzhos, S.: Comparison of Li, Na, Mg and Al-ion insertion in vanadium pentoxides and vanadium dioxides. RSC Adv. 7, 18643 (2017).Google Scholar
22. Kulish, V.V., Koch, D., and Manzhos, S.: Ab initio study of Li, Mg and Al insertion into rutile VO2: fast diffusion and enhanced voltages. Submitted to Phys. Chem. Chem. Phys. 19, 22538 (2017). doi: 10.1039/C7CP04360K.Google Scholar
23. Zhou, B., Shi, H., Cao, R., Zhang, X., and Jiang, Z.: Theoretical study on the initial stage of a magnesium battery based on a V2O5 cathode. Phys. Chem. Chem. Phys. 16, 18578 (2014).Google Scholar
24. Delmas, C., Cognac-Auradou, H., Cocciantelli, J.M., Ménétrier, M., and Doumerc, J.P.: The LixV2O5 system: an overview of the structure modifications induced by the lithium intercalation. Solid State Ion. 69, 257 (1994).Google Scholar
25. Morin, F.J.: Oxides which show a metal-to-insulator transition at the Neel temperature. Phys. Rev. Lett. 3, 34 (1959).Google Scholar
26. Carrasco, J.: Role of van der Waals forces in thermodynamics and kinetics of layered transition metal oxide electrodes: alkali and alkaline-earth ion insertion into V2O5 . J. Phys. Chem. C 118, 19599 (2014).Google Scholar
27. Sk, M.A., and Manzhos, S.: Exploring the sodium storage mechanism in disodium terephthalate as anode for organic battery using density-functional theory calculations. J. Power Sources 324, 572 (2016).Google Scholar
28. Chen, Y., and Manzhos, S.: A comparative computational study of lithium and sodium insertion into van der Waals and covalent tetracyanoethylene (TCNE)-based crystals as promising materials for organic lithium and sodium ion batteries. Phys. Chem. Chem. Phys. 18, 8874 (2016).Google Scholar
29. Zhang, Y.Y., Sun, Y.Y., Du, S.X., Gao, H.-J., and Zhang, S.B.: Organic salts as super-high rate capability materials for lithium-ion batteries. Appl. Phys. Lett. 100, 091905 (2012).Google Scholar
30. Smolinski, H., Gros, C., Weber, W., Peuchert, U., Roth, G., Weiden, M., and Geibel, C.: NaV2O5 as a quarter-filled ladder compound. Phys. Rev. Lett. 80, 5164 (1998).Google Scholar
31. Yaresko, A.N., Antonov, V.N., Eschrig, H., Thalmeier, P., and Fulde, P.: Electronic structure and exchange coupling in α’-NaV2O5 . Phys. Rev. B 62, 15538 (2000).Google Scholar
32. Ming, X., Fan, H.-G., Huang, Z.-F., Hu, F., Wang, C.-Z., and Chen, G.: Magnetic gap in Slater insulator α’-NaV2O5 . J. Phys. Condens. Matter 20, 155203 (2008).CrossRefGoogle Scholar
Supplementary material: File

Koch et al supplementary material

Koch et al supplementary material 1

Download Koch et al supplementary material(File)
File 667.1 KB