Hostname: page-component-78c5997874-4rdpn Total loading time: 0 Render date: 2024-11-10T07:21:16.481Z Has data issue: false hasContentIssue false

Flexible, stretchable, conformal electronics, and smart textiles: environmental life cycle considerations for emerging applications

Published online by Cambridge University Press:  16 December 2019

Karsten Schischke*
Affiliation:
Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung eV, Fraunhofer Institute for Reliability and Microintegration, Berlin, Germany
Nils F. Nissen
Affiliation:
Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung eV, Fraunhofer Institute for Reliability and Microintegration, Berlin, Germany
Martin Schneider-Ramelow
Affiliation:
Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung eV, Fraunhofer Institute for Reliability and Microintegration, Berlin, Germany Forschungsschwerpunkt Technologien der Mikroperipherik, Technische Universität Berlin, Berlin, Germany
*
Address all correspondence to Karsten Schischke at karsten.schischke@izm.fraunhofer.de
Get access

Abstract

The development of flexible, stretchable, conformal electronics, and smart textiles for wearables and other applications by now lacks a guidance toward environmentally benign product concepts. This article facilitates understanding of environmental implications of material choices and design decisions to help material scientists and product developers alike to consider sustainability implications of their research, innovation, and development. The more such electronics enter the market, the more these composite products will emerge as an ecological problem, unless appropriate measures are taken at the early research stage.

Type
Prospective Articles
Copyright
Copyright © Materials Research Society 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Kallmayer, C. and Löher, T.: Conformable electronics - formbare elektronik. PLUS. Prod. Leiterplatten Sys. 19, 728732 (2017).Google Scholar
2.Ghaffarzadeh, K., Hayward, J., and He, X.: Stretchable and Conformal Electronics 2019–2029 - Materials, Components, Products and 10-Year Market Outlook (IDTechEx, Boston, MA, 2018).Google Scholar
3.Wang, J. and Lee, P.S.: Progress and prospects in stretchable electroluminescent devices. Nanophotonics 6, 435451 (2017).CrossRefGoogle Scholar
4.Das, R.: Flexible, Printed and Organic Electronics 2019–2029: Forecasts, Players & Opportunities (IDTechEx, Boston, MA, 2018).Google Scholar
5.International Organization for Standardization: ISO 14040:2006. Environmental management – Life cycle assessment – Principles and framework.Google Scholar
6.International Organization for Standardization: ISO 14044:2006. Environmental management – Life cycle assessment – Requirements and guidelines.Google Scholar
7.Cossutta, M., McKechnie, J., and Pickering, S.J.: A comparative LCA of different graphene production routes. Green Chem. 19, 58745884 (2017).CrossRefGoogle Scholar
8.Fraunhofer IZM, Fraunhofer IAP, Technische Universität Berlin, Universität Bayreuth, KSG Leiterplatten, KOENEN, TECNARO, H. Hiendl, LOEWE Opta: Verbundvorhaben: Lignin als nachwachsender Rohstoff für Anwendungen in der Elektronik (joint research project: Lignin – A Renewable Resource for Electronic Applications) final report, 2015, pp. 153155.Google Scholar
9.Buyle, M., Audenaert, A., Billen, P., Boonen, K., and Van Passel, S.: The future of ex-ante LCA? Lessons learned and practical recommendations. Sustainability 11, 13 (2019).CrossRefGoogle Scholar
10.Walser, T., Demou, E., Lang, D.J., and Hellweg, S.: Prospective environmental life cycle assessment of nanosilver T-shirts. Environ. Sci. Technol. 45, 45704578 (2011).CrossRefGoogle ScholarPubMed
11.van der Velden, N.M., Kuusk, K., and Köhler, A.R.: Life cycle assessment and eco-design of smart textiles: the importance of material selection demonstrated through e-textile product redesign. Mater. Des. 84, 313324 (2015).CrossRefGoogle Scholar
12.Ma, M.M.M., Zhu, Z., and Chan, Y.C.: Environmental impact analysis of smartwatch using SimaPro8 tools and energy dispersive X-ray spectroscopy (EDX) technique. In Proc. of 2017 IEEE 19th Electronics Packaging Technology Conference (EPTC), 6–9 September 2017, Singapore.CrossRefGoogle Scholar
13.Sitek, J., Koziol, G., Koscielski, M., Steplewski, W., Arazna, A., Girulska, A., Dobon, A., Le Meur, A.S., Ventura, M., Ajuriagoxeascoa, I., Saint-Mard, M., Schischke, K., Anzizu, M., Arranz, P., Diver, C., Pamminger, R., Krautzer, F., Wimmer, W., van der Velden, N.M., Köhler, A.R., and Lauterbach, C.: Deliverable D4.2 - Scientific Case Study Reports and Evaluations, ILCD datasets, Case Study: Future-shape; Project LCA to go, 2013.Google Scholar
14.Vogtländer, J., Brezet, H., and Hendriks, C.F.: The virtual eco-costs ‘99 A single LCA-based indicator for sustainability and the eco-costs-value ratio (EVR) model for economic allocation. Int. J. Life Cycle Assess. 6, 157166 (2001).CrossRefGoogle Scholar
15.Proske, M., Clemm, C., and Richter, N.: Life Cycle Assessment of the Fairphone 2 - Final Report; Fraunhofer IZM: Berlin, 2016.Google Scholar
16.Apple Inc.: Product Environmental Report - Apple Watch Series 5, 2019.Google Scholar
17.Nuss, P. and Eckelman, M.J.: Life cycle assessment of metals: a scientific synthesis. PLoS ONE 9, 5 (2014).CrossRefGoogle ScholarPubMed
18.Slotte, M., Metha, G., and Zevenhoven, R.: Life cycle indicator comparison of copper, silver, zinc and aluminum nanoparticle production through electric arc evaporation or chemical reduction. Int. J. Energy Environ. 6, 233243 (2015).CrossRefGoogle Scholar
19.Lindstad, T., Monsen, B., and Osen, K.S.: How the ferroalloys industry can meet greenhouse gas regulations. In Proc. of the Twelfth International Ferroalloys Congress Sustainable Future, 6–9 June 2010, Helsinki, Finland, pp. 63–70.Google Scholar
20.Umweltbundesamt, Internationale Institut für Nachhaltigkeitsanalysen und -strategien (IINAS): Prozessorientierte Basisdaten für Umweltmanagement-Instrumente (ProBas). http://www.probas.umweltbundesamt.de/php/index.php (accessed April 24, 2019).Google Scholar
21.European Copper Institute: Life Cycle Assessment Data – Copper Wire. https://copperalliance.eu/uploads/2018/01/lca_copper_wire_2707.pdf (accessed June 20, 2019).Google Scholar
22.García-Valverde, R., Cherni, J.A., and Urbina, A.: Life cycle analysis of organic photovoltaic technologies. Prog. Photovoltaics 18, 535558 (2010).CrossRefGoogle Scholar
23.Held, M., Lam, N., Pietsch, M., Hindenberg, P., Romero-Nieto, C., and Hernandez-Sosa, G.: Biodegradable elastomers for stretchable light-emitting electrochemical cells. Presented at the MRS Spring Meeting, Phoenix, AZ, 22–26 April 2019.Google Scholar
24.Koh, A., Mrozek, R., and Slipher, G.: The freeze/thaw properties of the conformable conductor eutectic gallium-indium-tin. Presented at the MRS Spring Meeting, Phoenix, AZ, 22–26 April 2019.Google Scholar
25.Kramer-Bottiglio, R.: From particles to parts—multi-phase metallic particle additives for sensing and tunable materials. Presented at the MRS Spring Meeting, Phoenix, AZ, 22–26 April 2019.Google Scholar
26.Alfa Aesar: Gallium Indium Tin eutectic, 99.99% (metals basis) - GHS Gefahren- und Sicherheitshinweise. https://www.alfa.com/de/catalog/014634/ (accessed June 19, 2019).Google Scholar
27.Kallmayer, C., Schaller, F., Löher, T., Haberland, J., Kayatz, F., and Schult, A.: Optimized thermoforming process for conformable electronics. In Proc. of 13th International Congress Molded Interconnect Devices (MID), Würzburg, Germany, 25–26 September 2018.CrossRefGoogle Scholar
28.Greco, F.: Tattoo paper as a platform for bio-friendly and skin-contact conformable electronics. Presented at the MRS Spring Meeting, Phoenix, AZ, 22–26 April 2019.Google Scholar
29.Casula, G., Lai, S., Bonfiglio, A., and Cosseddu, P.: Printed low voltage organic field-effect transistors and circuits on paper substrate. Presented at the MRS Spring Meeting, Phoenix, AZ, 22–26 April 2019.Google Scholar
30.Zang, X., Shen, C., Chu, Y., Li, B., Wei, M., Zhong, J., Sanghadasa, M., and Lin, L.: Laser-induced molybdenum carbide–graphene composites for 3D foldable paper electronics. Adv. Mater. 30, 18 (2018).Google ScholarPubMed
31.Zou, Z., Zhu, C., Li, Y., Lei, X., Zhang, W., and Xiao, J.: Rehealable, fully recyclable, and malleable electronic skin enabled by dynamic covalent thermoset nanocomposite. Sci. Adv. 4, 2 (2018).CrossRefGoogle ScholarPubMed
32.Gort, I. and Gerrits, A.: Designing with Recycled Plastics – Guidelines; Amsterdam, 2015.Google Scholar
33.Pieńkowska, K.: Safety and toxicity aspects of polysiloxanes (silicones) applications. In Concise Encyclopedia of High Performance Silicones, 1st ed., edited by A. Tiwari, and M. D. Soucek (WILEY-Scrivener Publisher, Hoboken, NJ, USA, 2014), pp. 243251.CrossRefGoogle Scholar
34.TOXNET – Toxicology Data Network: Polydimethylsiloxanes. https://toxnet.nlm.nih.gov/cgi-bin/sis/search/a?dbs+hsdb:@term+@DOCNO+1444 (accessed September 23, 2019).Google Scholar
35.Richardson, R.R. Jr., Miller, J.A., and Reichert, W.M.: Polyimides as biomaterials: preliminary biocompatibility testing. Biomaterials 14, 627–35 (1993).CrossRefGoogle ScholarPubMed
36.U.S. National Library of Medicine: Haz-Map. https://hazmap.nlm.nih.gov/category-details?table=copytblagents&id=17771 (accessed September 23, 2019).Google Scholar
37.Asplund, M., Thaning, E., Lundberg, J., Sandberg-Nordqvist, A.C., Kostyszyn, B., Inganä, O., and von Holst, H.: Toxicity evaluation of PEDOT/biomolecular composites intended for neural communication electrodes. Biomed. Mater. 4, 811 (2009).CrossRefGoogle ScholarPubMed
38.Miriani, R.M., Abidian, M.R., and Kipke, D.R.: Cytotoxic analysis of the conducting polymer PEDOT using myocytes. In Conf. Proc. IEEE Eng. Med. Biol. Soc., 2008, pp. 1841–1844.CrossRefGoogle Scholar
39.EUR- Lex: Directive 2011/65/EU of the European Parliament and of the Council of 8 June 2011 on the restriction of the use of certain hazardous substances in electrical and electronic equipment. Official J. Eur. Union 174, 88110 (2011).Google Scholar
40.Öko-Institut, Fraunhofer IZM: Study to support the review of the list of restricted substances and to assess a new exemption request under RoHS 2. https://rohs.exemptions.oeko.info/index.php?id=288 (accessed May 9, 2019).Google Scholar
41.ECHA: European Chemicals Agency: Candidate List of Substances of Very High Concern for Authorisation. https://echa.europa.eu/candidate-list-table (accessed May 9, 2019).Google Scholar
42.Kayser, L.V.: Molecular engineering of stretchable organic electronics using block copolymers. Presented at the MRS Spring Meeting, Phoenix, AZ, 22–26 April 2019.Google Scholar
43.Elhi, F., Rinne, P., Karu, K., Tamm, T., Johanson, U., Ivanistsev, V., Aabloo, A., and Pohako-Esko, K.: Biofriendly ionic electromechanically active polymer actuators. Presented at the MRS Spring Meeting, Phoenix, AZ, 22–26 April 2019.Google Scholar
44.Zhao, Y., Zhang, Y., Xu, Y., Sun, H., and Peng, H.: Flexible and multi-functional energy storage devices with high safety. Presented at the MRS Spring Meeting, Phoenix, AZ, 22–26 April 2019.Google Scholar
45.Cao, J., Zhao, Y., Xu, Y., Zhang, Y., Zhang, B., and Peng, H.: Sticky-note supercapacitors. J. Mater. Chem. A 8, 3356 (2018).Google Scholar
46.Chen, T., Hao, R., Peng, H.S., and Dai, L.M.: High-performance, stretchable, wire-shaped supercapacitors. Angew. Chem. Int. Ed. 54, 618622 (2015).Google ScholarPubMed
47.Yang, Z.B., Deng, J., Chen, X.L., Ren, J., and Peng, H.S.: A highly stretchable, fiber-shaped supercapacitor. Angew. Chem. Int. Ed. 52, 1345313457 (2013).CrossRefGoogle ScholarPubMed
48.Dong, X.L., Guo, Z.Y., Song, Y.F., Hou, M.Y., Wang, J.Q., Wang, Y.G., and Xia, Y.Y.: Flexible and wire-shaped micro-supercapacitor based on Ni(OH)2-nanowire and ordered mesoporous carbon electrodes. Adv. Funct. Mater. 24, 34053412 (2014).CrossRefGoogle Scholar
49.Zhu, M.S., Huang, Y., Deng, Q.H., Zhou, J., Pei, Z.X., Xue, Q., Huang, Y., Wang, Z.F., Li, H.F., Huang, Q.H., and Zhi, C.: Highly flexible, freestanding supercapacitor electrode with enhanced performance obtained by hybridizing polypyrrole chains with mxene. Adv. Energy Mater. 6, 1600969 (2016).CrossRefGoogle Scholar
50.Kwon, Y.H., Woo, S.-W., Jung, H.-R., Yu, H.K., Kim, K., Oh, B.H., Ahn, S., Lee, S.-Y., Song, S.-W., Cho, J., Shin, H.-C., and Kim, J.Y.: Cable-type flexible lithium ion battery based on hollow multi-helix electrodes. Adv. Mater. 24, 51925197 (2012).CrossRefGoogle ScholarPubMed
51.Li, N., Chen, Z.P., Ren, W.C., Li, F., and Cheng, H.-M.: Flexible graphene-based lithium ion batteries with ultrafast charge and discharge rates. Proc. Natl. Acad. Sci. USA 109, 1736017365 (2012).CrossRefGoogle ScholarPubMed
52.Zhou, G.M., Li, L., Wang, D.-W., Shan, X.-Y., Pei, S.F., Li, F., and Cheng, H.-M.: A flexible sulfur-graphene-polypropylene separator integrated electrode for advanced Li-S batteries. Adv. Mater. 27, 641647 (2015).CrossRefGoogle ScholarPubMed
53.Wu, F.X., Zhao, E., Gordon, D., Xiao, Y.R., Hu, C.C., and Yushin, G.: Infiltrated porous polymer sheets as free-standing flexible lithium-sulfur battery electrodes. Adv. Mater. 28, 6365 (2016).CrossRefGoogle ScholarPubMed
54.Song, W.J. and Park, S.: All stretchable aqueous rechargeable batteries for wearable devices. Presented at the MRS Spring Meeting, Phoenix, AZ, 22–26 April 2019.Google Scholar
55.Gupta, R. and Xie, H.: Nanoparticles in daily life: applications, toxicity and regulations. J. Environ. Pathol. Toxicol. Oncol. 37, 209230 (2018).CrossRefGoogle ScholarPubMed
56.Glisovic, S., Pesic, D., Stojiljkovic, E., Golubovic, T., Krstic, D., Prascevic, M., and Jankovic, Z.: Emerging technologies and safety concerns: a condensed review of environmental life cycle risks in the nano-world. Int. J. Environ. Sci. Technol. 14, 23012320 (2017).CrossRefGoogle Scholar
57.Schischke, K., Stutz, M., Ruelle, J.-P., Griese, H., and Reichl, H.: Life cycle inventory analysis and identification of environmentally significant aspects in semiconductor manufacturing. In Proc. IEEE Int. Symp. on Electronics and the Environment, Denver, CO, May 2001; 145–150.Google Scholar
58.Schischke, K., Manessis, D., Pawlikowski, J., Kupka, T., Krivec, T., Pamminger, R., Glaser, S., Podhradsky, G., Nissen, N.F., Schneider-Ramelow, M., and Lang, K.-D.: Embedding as a key board-level technology for modularization and circular design of smart mobile products: Environmental assessment. In Proc. of EMPC 2019 – 22nd European Microelectronics Packaging Conference, Pisa, Italy, 16–19 September 2019.CrossRefGoogle Scholar
59.Wang, S., Xu, J., Wang, W., Wang, G.-J.N., Rastak, R., Molina-Lopez, F., Chung, J.W., Niu, S., Feiq, V.R., Lopez, J., Lei, T., Kwon, S.K., Kim, Y., Foudeh, A.M., Ejrlich, A., Gasperini, A., Yun, Y., Murmann, B., Tok, J.B., and Bao, Z.: Skin electronics from scalable fabrication of an intrinsically stretchable transistor array. Nature 555, 8388 (2018).CrossRefGoogle ScholarPubMed
60.Gupta, S., Taube Navaraj, W., Lorenzelli, L., and Dahiya, R.: Ultra-thin chips for high-performance flexible electronics. npj Flexible Electron. 2, 2 (2018).CrossRefGoogle Scholar
61.Suwald, T.: Thin chips for document security. In Ultra-thin Chip Technology and Applications, edited by Burghartz, J. (Springer, New York, Dordrecht, Heidelberg, London, 2011), pp. 399.CrossRefGoogle Scholar
62.Schischke, K., Deubzer, O., Griese, H., and Stobbe, I.: LCA for Environmental management and eco-design in the electronics industry - state of the art and screening approaches. In LCA/LCM 2002 – Life Cycle Assessment and Life Cycle Management E-conference, 20–25 May 2002.Google Scholar
63.Krishnan, N., Boyd, S., Somani, A., Raoux, S., Clark, D., and Dornfeld, D.: A hybrid life cycle inventory of nano-scale semiconductor manufacturing. Environ. Sci. Technol. 42, 30693075 (2008).CrossRefGoogle ScholarPubMed
64.Søndergaard, R., Hösel, M., Angmo, D., Larsen-Olsen, T.T., and Krebs, F.C.: Roll-to-roll fabrication of polymer solar cells. Mater. Today 15, 3649 (2012).CrossRefGoogle Scholar
65.mermaids. Ocean Clean Wash: Handbook for Zero Microplastics from Textiles and Laundry, 2018. http://oceancleanwash.org/wp-content/uploads/2018/10/Handbook-for-zero-microplastics-from-textiles-and-laundry-developed-2.pdf (accessed June 24, 2019).Google Scholar
66.Mertz, L.: Are wearables safe?: We carry our smart devices with us everywhere - Even to bed - But have we been sleeping with the enemy, or are cautionary tales overinflated? IEEE Pulse 7, 3943 (2016).CrossRefGoogle ScholarPubMed
67.Makov, T., Fishman, T., Chertow, M.R., and Blass, V.: What affects the secondhand value of smartphones: evidence from eBay. J. Ind. Ecol. 23, 549559 (2019).CrossRefGoogle Scholar
68.Tröger, N., Wieser, H., and Hübner, R.: Smartphones Are Replaced More Frequently than t-Shirts – Patterns of Consumer Use and Reasons for Replacing Durable Goods (Chamber of Labour in Vienna, Vienna, Austria, 2017).Google Scholar
69.newzoo: Celebrating 10 Years of iPhones: 63% of All iPhones Ever Sold Are Still in Use – 728 Million, by Bernd van der Wielen, June 29, 2017. https://newzoo.com/insights/articles/63-percent-of-all-iphones-ever-sold-still-in-use/ (accessed January 28, 2019).Google Scholar
70.Wieser, H.: Ever-faster, ever-shorter? Replacement cycles of durable goods in historical perspective. In Proc. of PLATE – Product Lifetimes And The Environment Conference, 8–10 November 2017; Delft: The Netherlands.Google Scholar
71.wrap: Valuing Our Clothes: the cost of UK fashion, July 2017. http://www.wrap.org.uk/sites/files/wrap/valuing-our-clothes-the-cost-of-uk-fashion_WRAP.pdf (accessed May 9, 2019).Google Scholar
72.Xu, M., Qi, J., Li, F., and Zhang, Y.: Highly stretchable strain sensors with reduced graphene oxide sensing liquids for wearable electronics. Nanoscale 10, 52645271 (2018).CrossRefGoogle ScholarPubMed
73.Yang, X.X., Huang, Y.F., Dai, Z.H., Barber, J., Wang, P.L., and Lu, N.S.: “Cut-and-paste” method for the rapid prototyping of soft electronics. Sci. China Technol. Sci. 62, 78 (2019).CrossRefGoogle Scholar
74.Lu, N.S.: “Cut-solder-paste” process for the rapid prototyping of wireless and reconfigurable electronic tattoos. Presented at the MRS Spring Meeting, Phoenix, AZ, 22–26 April 2019.Google Scholar
75.Köhler, A.R.: End-of-life implications of electronic textiles - assessment of a converging technology. Master thesis, Lund, Sweden, 2008.Google Scholar
76.Reuter, M.A. and van Schaik, A.: Resource efficient metal and material recycling. In REWAS 2013: Enabling Materials Resource Sustainability, edited by A. Kvithyld, C. Meskers, R. Kirchain, G. Krumdick, B. Mishra, M. Reuter, C. Wang, M. Schlesinger, G. Gaustad, D. Lados, and J. Spangenberger (Wiley, Hoboken, New Jersey, 2013) pp. 332340.Google Scholar
77.Song, Y.J., Kim, J.-W., Cho, H.-E., and Lee, S.-M.: Addressable organic light-emitting diode fabrics toward fully-functional wearable displays. Presented at the MRS Spring Meeting, Phoenix, AZ, 22–26 April 2019.Google Scholar
78.Aschenbrenner, R. and Kallmayer, C.: Materials and concepts for textile sensor systems. In 9th International Conference on Materials for Advanced Technologies (ICMAT 2017), 18–23 June 2017, Singapore.Google Scholar
79.Foerster, P., Simon, E., Hänsch, F., Kallmayer, C., Schneider-Ramelow, M., and Lang, K.-D.: Textile Leiterplatte - Large-area, wirtschaftlich und umweltschonend. In Proc. of Elektronische Baugruppen und Leiterplatten EBL; Fellbach, 2014; pp. 245–253.Google Scholar
80.Jung, Y.H., Chang, T.-H., Zhang, H., Yao, C., Zheng, Q., Yang, V.W., Mi, H., Kim, M., Cho, S.J., Park, D.-W., Jiang, H., Lee, J., Qiu, Y., Zhou, W., Cai, Z., Gong, S., and Ma, Z.: High-performance green flexible electronics based on biodegradable cellulose nanofibril paper. Nat. Commun. 6, 29 (2015).CrossRefGoogle ScholarPubMed
81.Kaltenbrunner, M.: Soft electronic and robotic systems from resilient yet biocompatible and degradable materials. Presented at the MRS Spring Meeting, Phoenix, AZ, 22–26 April 2019.CrossRefGoogle Scholar
82.Saldanha, D.J., Janfeshan, B., Abdali, Z., and Dorval Courchesne, N.-M.: Integration of genetically engineered protein fibers with textile scaffolds for wearable sensing applications. Presented at the MRS Spring Meeting, Phoenix, AZ, 22–26 April 2019.Google Scholar
83.Pietsch, M., Held, M., Pocarelli, L., Sanchez-Sanchez, A., Mecerreyes, D., and Hernandez-Sosa, G.: Digitally inkjet-printed electro(fluoro)chromic devices consisting of biodegradable and biocompatible materials. Presented at the MRS Spring Meeting, Phoenix, AZ, 22–26 April 2019.Google Scholar
84.Kaneko, T. and Okajima, M.: Biopolyimides for transparent insulators. Presented at the MRS Spring Meeting, Phoenix, AZ, 22–26 April 2019.Google Scholar
85.Mohammadifar, M., Yazgan, I., Zhang, J., Kariuki, V., Sadik, O.A., and Cho, S.: Green biobatteries: hybrid paper–polymer microbial fuel cells. Adv. Sustain. Syst. 2, 7 (2018).CrossRefGoogle Scholar
86.NSAI: Plastics - Evaluation of compostability - Test scheme and specifications. Deutsches Institut für Normung / European Norm: DIN EN 14995:2007-03.Google Scholar
87.Fitzgerald, A.M.: The Internet of Disposable Things Will Be Made of Paper and Plastic Sensors - For disposable sensors, silicon will never be the right fit—but cheaper tech is nearly here. IEEE Spectrum, 2018. https://spectrum.ieee.org/semiconductors/materials/the-internet-of-disposable-things-will-be-made-of-paper-and-plastic-sensors (accessed June 24, 2019).Google Scholar
88.She, D., Tsang, M., and Allen, M.: Biodegradable batteries with immobilized electrolyte for transient MEMS. Biomed. Microdevices 21, 23 (2019).CrossRefGoogle ScholarPubMed
89.EUR-Lex: Directive 2012/19/EU of the European Parliament and of the Council of 4 July 2012 on waste electrical and electronic equipment (WEEE). Official J. Eur. Union 197, 3871 (2012).Google Scholar
90.EUR-Lex: Directive 2009/125/EC of the European Parliament and of the Council of 21 October 2009 establishing a framework for the setting of ecodesign requirements for energy-related products. Official J. Eur. Union 285, 1035 (2009).Google Scholar
91.European Commission: Ecodesign Working Plan 2016–2019, COM(2016) 773 final, Brussels, 2016.Google Scholar