Hostname: page-component-78c5997874-94fs2 Total loading time: 0 Render date: 2024-11-10T05:02:04.228Z Has data issue: false hasContentIssue false

Rapid and scalable synthesis of crystalline tin oxide nanoparticles with superior photovoltaic properties by flame oxidation

Published online by Cambridge University Press:  19 September 2017

Easwaramoorthi Ramasamy*
Affiliation:
International Advanced Research Centre for Powder Metallurgy and New Materials, Hyderabad 500005, India
P. Kathirvel
Affiliation:
PSG College of Technology, Coimbatore 641004, India
S. Kumar*
Affiliation:
International Advanced Research Centre for Powder Metallurgy and New Materials, Hyderabad 500005, India
Koppoju Suresh
Affiliation:
International Advanced Research Centre for Powder Metallurgy and New Materials, Hyderabad 500005, India
Ganapathy Veerappan
Affiliation:
International Advanced Research Centre for Powder Metallurgy and New Materials, Hyderabad 500005, India
*
Address all correspondence to Easwaramoorthi Ramasamy and S. Kumar at easwar@arci.res.in; skumar@arci.res.in
Address all correspondence to Easwaramoorthi Ramasamy and S. Kumar at easwar@arci.res.in; skumar@arci.res.in
Get access

Abstract

Tin oxide (SnO2) nanoparticles in gram scale quantity were synthesized from inexpensive Sn feedstock by flame oxidation. Selection of optimal feedstock size based on computational fluid dynamics ensures complete conversion of Sn into SnO2 nanoparticles. The rapid melting and oxidation of feedstock in high-temperature oxidative flame endow the crystalline and phase-pure SnO2 nanoparticles, as evident from x-ray diffraction and transmission electron microscopy analysis. Dye-sensitized solar cells fabricated using flame-SnO2 nanoparticles show higher efficiency (ɳ = 2.72%) than that of commercial SnO2 nanoparticles (ɳ = 1.53%). The increased efficiency is attributed to suppression of electron recombination caused by passivation of sub-band-edge surface states.

Type
Research Letters
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Fierro, J.L.G.: Metal Oxides: Chemistry and Applications (CRC Press, Florida, 2005).Google Scholar
2. Das, S. and Jayaraman, V.: SnO2: a comprehensive review on structures and gas sensors. Prog. Mater. Sci. 66, 112 (2014).Google Scholar
3. Ramasamy, E. and Lee, J.: Ordered mesoporous Zn-doped SnO2 synthesized by exo-templating for efficient dye-sensitized solar cells. Energy Environ. Sci. 4, 2529 (2011).Google Scholar
4. Li, J., Zhao, Y., Wang, N., and Guan, L.: A high performance carrier for SnO2 nanoparticles used in lithium ion battery. Chem. Commun. 47, 5238 (2011).Google Scholar
5. Kumar, R.R., Parmar, M., Rao, K.N., Rajanna, K., and Phani, A.R.: Novel low-temperature growth of SnO2 nanowires and their gas-sensing properties. Scr. Mater. 68, 408 (2013).CrossRefGoogle Scholar
6. Park, M., Kang, Y., Wang, G., Dou, S., and Liu, H.: The effect of morphological modification on the electrochemical properties of SnO2 nanomaterials. Adv. Funct. Mater. 18, 455 (2008).Google Scholar
7. Batzill, M. and Diebold, U.: The surface and materials science of tin oxide. Prog. Surf. Sci. 79, 47 (2005).Google Scholar
8. Ramasamy, E. and Lee, J.: Ordered mesoporous SnO2-based photoanodes for high-performance dye-sensitized solar cells. J. Phys. Chem. C 114, 22032 (2010).Google Scholar
9. Mei, L., Chen, Y., and Ma, J.: Gas sensing of SnO2 nanocrystals revisited: developing ultra-sensitive sensors for detecting the H2S leakage of biogas. Sci. Rep. doi: 10.1038/srep06028, Published online 12 August 2014.Google Scholar
10. Guo, T., Yao, M., Lin, Y., and Nan, C.: A comprehensive review on synthesis methods for transition-metal oxide nanostructures. CrystEngComm 17, 3551 (2015).Google Scholar
11. Kammler, H.K., Mädler, L., and Pratsinis, S.E.: Flame synthesis of nanoparticles. Chem. Eng. Technol. 24, 583 (2001).Google Scholar
12. Roth, P.: Particle synthesis in flames. Proc. Combust. Inst. 31, 1773 (2007).Google Scholar
13. Zhu, W. and Pratsinis, S.E.: Synthesis of SiO and SnO particles in diffusion flame reactors. AIChE J. 43, 2657 (1997).Google Scholar
14. Liu, J., Gu, F., Hu, Y., and Li, C.: Flame synthesis of tin oxide nanorods: a continuous and scalable approach. J. Phys. Chem. C 114, 5867 (2010).Google Scholar
15. Hu, Y., Xu, K., Kong, L., Jiang, H., Zhang, L., and Li, C.: Flame synthesis of single crystalline SnO nanoplatelets for lithium-ion batteries. Chem. Eng. J. 242, 220 (2014).Google Scholar
16. Rao, P.M. and Zheng, X.: Rapid catalyst-free flame synthesis of dense, aligned α-Fe2O3 nanoflake and CuO nanoneedle arrays. Nano Lett. 9, 3001 (2009).CrossRefGoogle ScholarPubMed
17. Rao, P.M. and Zheng, X.: Flame synthesis of tungsten oxide nanostructures on diverse substrates. Proc. Combust. Inst. 33, 1891 (2011).Google Scholar
18. Kathirvel, P., Chandrasekaran, J., Manoharan, D., and Kumar, S.: Preparation and characterization of alpha alumina nanoparticles by in-flight oxidation of flame synthesis. J. Alloys Compd. 590, 341 (2014).Google Scholar
19. Parmar, K.P.S., Ramasamy, E., Lee, J. and Lee, J.S.: A simple method for producing mesoporous anatase TiO2 nanocrystals with elevated photovoltaic performance. Scr. Mater. 62, 223 (2010).Google Scholar
20. Kumar, S. and Selvarajan, V.: Spheroidization of metal and ceramic powders in thermal plasma jet. Comput. Mater. Sci. 36, 451 (2006).Google Scholar
21. Ozturk, A. and Cetegen, B.M.: Modeling of precipitate formation in precursor droplets injected axially into an oxygen/acetylene combustion flame. Mater. Sci. Eng. A 422, 163 (2006).Google Scholar
22. Kanury, A.M.: Introduction to Combustion Phenomena (Gordon and Beach Science Publishers, New York, 1975).Google Scholar
23. Rosner, D.E.: Flame synthesis of valuable nanoparticles: recent progress/current needs in area of rate laws, population dynamics, and characterization. Ind. Eng. Chem. Res. 44, 6045 (2005).Google Scholar
24. Kumar, S., Kang, K., Bae, G., Selvarajan, V., and Lee, C.: Synthesis and characterization of alumina nano-powders by oxidation of molten aluminium in a thermal plasma reactor: comparison with theoretical estimation, Mater . Chem. Phys. 112, 436 (2008).Google Scholar
25. Zolotko, A.N., Poletaev, N.I., and Vovchuk, Y.I.: Gas-disperse synthesis of metal oxide particles. Combust. Explos. Shock Waves 51, 252 (2015).Google Scholar
26. O'Regan, B. and Gratzel, M.: A low cost, high efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 353, 737 (1991).Google Scholar
27. Wang, Y., Fei, C., Zhang, R., Guo, L., Shen, T., Tian, J., and Cao, G.: Titanium dioxide nanowires modified tin oxide hollow spheres for dye-sensitized solar cells. MRS Commun. 6, 226 (2016).Google Scholar
28. Basu, K., Benetti, D., Zhao, H., Jin, L., Vetrone, F., Vomiero, A., and Rosei, F.: Enhanced photovoltaic properties in dye sensitized solar cells by surface treatment of SnO2 photoanodes. Sci. Rep. doi: 10.1038/srep23312, Published online 14 March 2016.Google Scholar
29. Prasittichai, C. and Hupp, J.T.: Surface modification of SnO2 photoelectrodes in dye-sensitized solar cells: significant improvements in photovoltage via Al2O3 atomic layer deposition. J. Phys. Chem. Lett. 1, 1611 (2010).Google Scholar
30. Ito, S., Liska, P., Comte, P., Charvet, R., Pechy, P., Bach, U., Schmidt-Mende, L., Zakeeruddin, S.M., Kay, A., Nazeeruddin, M.K., and Gratzel, M.: Control of dark current in photoelectrochemical (TiO2/I––I3 ) and dye-sensitized solar cells. Chem. Commun. 34, 4351 (2005).Google Scholar
Supplementary material: File

Ramasamy et al supplementary material

Figures S1-S3

Download Ramasamy et al supplementary material(File)
File 608.3 KB