Hostname: page-component-78c5997874-lj6df Total loading time: 0 Render date: 2024-11-10T13:52:07.865Z Has data issue: false hasContentIssue false

An ode to polyethylene

Published online by Cambridge University Press:  19 September 2019

Svetlana V. Boriskina*
Affiliation:
Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
*
a)Address all correspondence to Svetlana V. Boriskina at sborisk@mit.edu, http://sboriskina.mit.edu
Get access

Abstract

Polyethylene is one of the most produced materials in the world—is it a blessing or a curse? This article makes the case for the former by highlighting a range of emerging applications of polyethylene in energy and sustainability, including passive cooling of electronics and wearables, water treatment and harvesting, and even ocean cleanup from plastic waste debris.

Usually, when the word “polyethylene” is mentioned in the context of discussing sustainability issues, a good chance the message is that “the current level of environmental plastic pollution is unsustainable.” Polyethylene does indeed comprise a large volume of plastic waste, but only because it is used in so many different products, which eventually reach the end of their lifetime and end up on the landfills and in the ocean. There is, however, a good reason—actually, many good reasons—why polyethylene is one of the most produced materials in the world, and this review discusses various useful applications stemming from the unique material properties of polyethylene. Some of the emerging applications of polyethylene hold high promise for sustainable energy generation from renewable sources and for sustainable management of planetary energy and water resources. Light weight and corrosion resistance of polyethylene, combined with its unique infrared transparency and heat transfer properties, which can be engineered to span between the near-perfect insulation and metal-like conduction, are at the core of new technological applications of a not-so-old material.

Type
Review Article
Copyright
Copyright © The Author 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Geyer, R., Jambeck, J.R., and Law, K.L.: Production, use, and fate of all plastics ever made. Sci. Adv. 3, e1700782 (2017).CrossRefGoogle Scholar
Trossarelli, L. and Brunella, V.P.: Polyethylene: Discovery and growth. In Proc. UHMWPE Meeting (University of Torino, Italy, 2003); pp. 118.Google Scholar
McMillan, F.M.: Fruitful innovation—1. The polyethylene discovery. In The Chain Straighteners (Palgrave Macmillan: London, U.K., 1979); pp. 5672.CrossRefGoogle Scholar
Fawcett, E.W. and Gibson, R.O.: Improvements in or relating to the polymerisation of ethylene. Patent No. GB471590, 1937.Google Scholar
Ziegler, K., Breil, H., and Martin, H.: High molecular polyethylenes. Patent No. GB799392, 1957.Google Scholar
Ziegler, K., Heinz, B., Erhard, H., and Heinz, M.: High molecular polyethylenes. Patent No. DE973626, 1960.Google Scholar
Hogan, J.P. and Banks, R.L.: Polymers and production thereof. Patent No. US2825721, 1958.Google Scholar
White, J.R.: A process for producing bulky yarn-like formation of a molecularly oriented film strips of a synthetic, organic polymer. Patent No. DE1175385B, 1958.Google Scholar
Demirors, M.: The history of polyethylene. In 100+ Years of Plastics. Leo Baekeland and Beyond, ACS Symposium Series, Vol. 1080, Thomas, Strom E. and Rasmussen, S.C., eds. (American Chemical Society, Washington, DC, 2011); pp. 115145.CrossRefGoogle Scholar
Krimm, S., Liangt, C.Y., and Sutherland, G.B.B.M.: Infrared spectra of high polymers. II. Polyethylene. J. Polym. Sci. XXVII, 241254 (1958).Google Scholar
Tong, J.K., Huang, X., Boriskina, S.V., Loomis, J., Xu, Y., and Chen, G.: Infrared-transparent visible-opaque fabrics for wearable personal thermal management. ACS Photonics 2, 769778 (2015).CrossRefGoogle Scholar
Balocco, C., Mercatelli, L., Azzali, N., Meucci, M., and Grazzini, G.: Experimental transmittance of polyethylene films in the solar and infrared wavelengths. Sol. Energy 165, 199205 (2018).CrossRefGoogle Scholar
Hsu, P.-C., Song, A.Y., Catrysse, P.B., Liu, C., Peng, Y., Xie, J., Fan, S., and Cui, Y.: Radiative human body cooling by nanoporous polyethylene textile. Science 353, 10191023 (2016).CrossRefGoogle ScholarPubMed
Betts, K.H., Parsons, R.R., and Brett, M.J.: Heat mirrors for greenhouses. Appl. Opt. 24, 2651 (1985).CrossRefGoogle ScholarPubMed
Espí, E., Salmerón, A., Fontecha, A., García, Y., and Real, A.I.: Plastic films for agricultural applications. J. Plast. Film Sheeting 22, 85102 (2006).CrossRefGoogle Scholar
Tiwari, G.N., Singh, H.N., and Tripathi, R.: Present status of solar distillation. Sol. Energy 75, 367373 (2003).CrossRefGoogle Scholar
Dsilva Winfred Rufuss, D., Iniyan, S., Suganthi, L., and Davies, P.A.: Solar stills: A comprehensive review of designs, performance and material advances. Renewable Sustainable Energy Rev. 63, 464496 (2016).CrossRefGoogle Scholar
Elimelech, M. and Phillip, W.A.: The future of seawater desalination: Energy, technology, and the environment. Science 333, 712717 (2011).CrossRefGoogle ScholarPubMed
Ni, G., Zandavi, S.H., Javid, S.M., Boriskina, S.V., Cooper, T., and Chen, G.: A salt-rejecting floating solar still for low-cost desalination. Energy Environ. Sci. 11, 15101519 (2011).CrossRefGoogle Scholar
Phadatare, M.K. and Verma, S.K.: Effect of cover materials on heat and mass transfer coefficients in a plastic solar still. Desalin. Water Treat. 2, 254259 (2009).CrossRefGoogle Scholar
Hay, H.R.: Plastic solar stills: Past, present, and future. Sol. Energy 14, 393404 (1973).CrossRefGoogle Scholar
Chiavazzo, E., Morciano, M., Viglino, F., Fasano, M., and Asinari, P.: Passive solar high-yield seawater desalination by modular and low-cost distillation. Nat. Sustain. 1, 763772 (2018).CrossRefGoogle Scholar
Ni, G., Li, G., Boriskina, S.V., Li, H., Yang, W., Zhang, T., and Chen, G.: Steam generation under one sun enabled by a floating structure with thermal concentration. Nat. Energy 1, 16126 (2016).CrossRefGoogle Scholar
Cooper, T.A., Zandavi, S.H., Ni, G.W., Tsurimaki, Y., Huang, Y., Boriskina, S.V., and Chen, G.: Contactless steam generation and superheating under one sun illumination. Nat. Commun. 9, 5086 (2018).CrossRefGoogle ScholarPubMed
Ni, G., Li, G., Boriskina, S.V., Li, H., Yang, W., Zhang, T., and Chen, G.: Steam generation under one sun enabled by a floating structure with thermal concentration. Nat. Energy 1, 17 (2016).CrossRefGoogle Scholar
Okada, T. and Mandelkern, L.: Effect of morphology and degree of crystallinity on the infrared absorption spectra of linear polyethylene. J. Polym. Sci., Part A-2 5, 239262 (1967).CrossRefGoogle Scholar
Eisenreich, N. and Rohe, T.: Infrared spectroscopy in analysis of plastics recycling. In Encyclopedia of Analytical Chemistry (John Wiley & Sons, Ltd., Chichester, U.K., 2006).Google Scholar
Inampudi, S., Cheng, J., Salary, M.M., and Mosallaei, H.: Unidirectional thermal radiation from a SiC metasurface. J. Opt. Soc. Am. B 35, 39 (2018).CrossRefGoogle Scholar
Jones, A.C. and Raschke, M.B.: Thermal infrared near-field spectroscopy. Nano Lett. 12, 14751481 (2012).CrossRefGoogle ScholarPubMed
Boriskina, S.V., Tong, J.K., Hsu, W.-C., Liao, B., Huang, Y., Chiloyan, V., and Chen, G.: Heat meets light on the nanoscale. Nanophotonics 5, 134160 (2016).CrossRefGoogle Scholar
Bermel, P., Boriskina, S.V., Yu, Z., and Joulain, K.: Control of radiative processes for energy conversion and harvesting. Opt. Express 23, A1533A1540 (2015).CrossRefGoogle ScholarPubMed
Hossain, M.M. and Gu, M.: Radiative cooling: Principles, progress, and potentials. Adv. Sci. 3, 1500360 (2016).CrossRefGoogle ScholarPubMed
Sun, X., Sun, Y., Zhou, Z., Alam, M.A., and Bermel, P.: Radiative sky cooling: Fundamental physics, materials, structures, and applications. Nanophotonics 6, 9971015 (2017).CrossRefGoogle Scholar
Li, W., Shi, Y., Chen, Z., and Fan, S.: Photonic thermal management of coloured objects. Nat. Commun. 9, 4240 (2018).CrossRefGoogle ScholarPubMed
Hoyt, T., Arens, E., and Zhang, H.: Extending air temperature setpoints: Simulated energy savings and design considerations for new and retrofit buildings. Build. Environ. 88, 8996 (2015).CrossRefGoogle Scholar
Strobach, E.M. and Boriskina, S.V.: Daylighting. Opt. Photonics News 29, 24 (2018).CrossRefGoogle Scholar
Eriksson, T.S., Lushiku, E.M., and Granqvist, C.G.: Materials for radiative cooling to low temperature. Sol. Energy Mater. 11, 149161 (1984).CrossRefGoogle Scholar
Gentle, A.R., Dybdal, K.L., and Smith, G.B.: Polymeric mesh for durable infra-red transparent convection shields: Applications in cool roofs and sky cooling. Sol. Energy Mater. Sol. Cells 115, 7985 (2013).CrossRefGoogle Scholar
Smith, G., Gentle, A., Arnold, M., and Cortie, M.: Nanophotonics-enabled smart windows, buildings and wearables. Nanophotonics 5, 5573 (2016).CrossRefGoogle Scholar
Granqvist, C.G., Hjortsberg, A., and Eriksson, T.S.: Radiative cooling to low temperatures with selectivity IR-emitting surfaces. Thin Solid Films 90, 187190 (1982).CrossRefGoogle Scholar
Niklasson, G.A. and Eriksson, T.S.: Radiative cooling with pigmented polyethylene foils. In International Society for Optics and Photonics, Proceedings of SPIE, Vol. 1016, Granqvist, C.-G. and Lampert, C.M., eds. (International Society for Optics and Photonics, Hamburg, Germany, 1989); p. 89.Google Scholar
Eriksson, T.S. and Granqvist, C.G.: Radiative cooling computed for model atmospheres. Appl. Opt. 21, 43814388 (1982).CrossRefGoogle ScholarPubMed
Granqvist, C.G.: Radiative cooling to low temperatures: General considerations and application to selectively emitting SiO films. J. Appl. Phys. 52, 4205 (1981).CrossRefGoogle Scholar
Zhai, Y., Ma, Y., David, S.N., Zhao, D., Lou, R., Tan, G., Yang, R., and Yin, X.: Scalable-manufactured randomized glass-polymer hybrid metamaterial for daytime radiative cooling. Science 355, 10621066 (2017).CrossRefGoogle ScholarPubMed
Gentle, A.R. and Smith, G.B.: Radiative heat pumping from the Earth using surface phonon resonant nanoparticles. Nano Lett. 10, 373379 (2010).CrossRefGoogle ScholarPubMed
Boriskina, S.V., Weinstein, L.A., Tong, J.K., Hsu, W.-C., and Chen, G.: Hybrid optical–thermal antennas for enhanced light focusing and local temperature control. ACS Photonics 3, 17141722 (2016).CrossRefGoogle Scholar
Boriskina, S.V., Green, M.A., Catchpole, K., Yablonovitch, E., Beard, M.C., Okada, Y., Lany, S., Gershon, T., Zakutayev, A., Tahersima, M.H., Sorger, V.J., Naughton, M.J., Kempa, K., Dagenais, M., Yao, Y., Xu, L., Sheng, X., Bronstein, N.D., Rogers, J.A., Alivisatos, A.P., Nuzzo, R.G., Gordon, J.M., Wu, D.M., Wisser, M.D., Salleo, A., Dionne, J., Bermel, P., Greffet, J.-J., Celanovic, I., Soljacic, M., Manor, A., Rotschild, C., Raman, A., Zhu, L., Fan, S., and Chen, G.: Roadmap on optical energy conversion. J. Opt. 18, 073004 (2016).CrossRefGoogle Scholar
Lozano, L.M., Hong, S., Huang, Y., Zandavi, H., El Aoud, Y.A., Tsurimaki, Y., Zhou, J., Xu, Y., Osgood, R.M., Chen, G., and Boriskina, S.V.: Optical engineering of polymer materials and composites for simultaneous color and thermal management. Opt. Mater. Express 9, 1990 (2019).CrossRefGoogle Scholar
Guan, H., Sebben, M., and Bennett, J.: Radiative- and artificial-cooling enhanced dew collection in a coastal area of South Australia. Urban Water J. 11, 175184 (2014).CrossRefGoogle Scholar
Nilsson, T.: Initial experiments on dew collection in Sweden and Tanzania. Sol. Energy Mater. Sol. Cells 40, 2332 (1996).CrossRefGoogle Scholar
Beysens, D., Muselli, M., Milimouk, I., Ohayon, C., Berkowicz, S., Soyeux, E., Mileta, M., and Ortega, P.: Application of passive radiative cooling for dew condensation. Energy 31, 23032315 (2006).CrossRefGoogle Scholar
Nilsson, T.M.J., Vargas, W.E., Niklasson, G.A., and Granqvist, C.G.: Condensation of water by radiative cooling. Renewable Energy 5, 310317 (1994).CrossRefGoogle Scholar
Sharan, G.: Harvesting dew with radiation cooled condensers to supplement drinking water supply in semi-arid coastal northwest India. Int. J. Serv. Learn. Eng. Humanit. Eng. Soc. Entrep. 6, 130150 (2011).Google Scholar
Bhatia, B., Leroy, A., Shen, Y., Zhao, L., Gianello, M., Li, D., Gu, T., Hu, J., Soljačić, M., and Wang, E.N.: Passive directional sub-ambient daytime radiative cooling. Nat. Commun. 9, 5001 (2018).CrossRefGoogle ScholarPubMed
Yang, A., Cai, L., Zhang, R., Wang, J., Hsu, P.-C., Wang, H., Zhou, G., Xu, J., and Cui, Y.: Thermal management in nanofiber-based face mask. Nano Lett. 17, 35063510 (2017).CrossRefGoogle ScholarPubMed
Peng, Y., Chen, J., Song, A.Y., Catrysse, P.B., Hsu, P.-C., Cai, L., Liu, B., Zhu, Y., Zhou, G., Wu, D.S. et al.: Nanoporous polyethylene microfibres for large-scale radiative cooling fabric. Nat. Sustain. 1, 105112 (2018).CrossRefGoogle Scholar
Zandavi, S.H., Huang, Y., Ni, G., Pang, R., Osgood, R.M. III, Kamal, P., Jain, A., Chen, G., and Boriskina, S.V.: Polymer metamaterial fabrics for personal radiative thermal management. In Frontiers in Optics 2017 (OSA, Washington, D.C., 2017); p. FM4D.6.CrossRefGoogle Scholar
Boriskina, S.V., Zandavi, H., Song, B., Huang, Y., and Chen, G.: Heat is the new light. Opt. Photonics News 28, 2633 (2017).Google Scholar
Chen, G., Tong, J.K., Boriskina, S.V., Huang, X., Loomis, J., and Xu, L.: Infrared transparent visible opaque fabrics. Patent No. US9951446, 2015.Google Scholar
Fukushima, Y., Murase, H., and Ohta, Y.: Dyneema®: Super fiber produced by the gel spinning of a flexible polymer. In High-Performance and Specialty Fibers, The Society of Fiber Science and Technology, Japan (Springer Japan, Tokyo, 2016); pp. 109132.CrossRefGoogle Scholar
Simmelink, J.A.P.M., Mencke, J.J., Jacobs, M.J.N., and Marissen, R.: Process for making high-performance polyethylene multifilament yarn. Patent No. US9759525B2, March 2, 2009.Google Scholar
Ghaly, A., Ananthashankar, R., Alhattab, M., and Ramakrishnan, V.: Production, characterization and treatment of textile effluents: A critical review. J. Chem. Eng. Process Technol. 5, 118 (2014).Google Scholar
Bomgardner, M.: Greener Textile Dyeing. C&EN Glob. Enterp. 96, 2833 (2018).Google Scholar
Cai, L., Peng, Y., Xu, J., Zhou, C., Zhou, C., Wu, P., Lin, D., Fan, S., and Cui, Y.: Temperature regulation in colored infrared-transparent polyethylene textiles. Joule 3, 14781486 (2019).CrossRefGoogle Scholar
Daniel, C., Longo, S., and Guerra, G.: High porosity polyethylene aerogels. Polyolefins J. 2, 4955 (2015).Google Scholar
Attia, Y.A.: Polyethylene aerogels and method of their production. Patent No. US9034934B1, May 30, 2012.Google Scholar
Shen, S., Henry, A., Tong, J., Zheng, R., and Chen, G.: Polyethylene nanofibres with very high thermal conductivities. Nat. Nanotechnol. 5, 251255 (2010).CrossRefGoogle ScholarPubMed
Loomis, J., Ghasemi, H., Huang, X., Thoppey, N., Wang, J., Tong, J.K., Xu, Y., Li, X., Lin, C.-T., and Chen, G.: Continuous fabrication platform for highly aligned polymer films. Technology 02, 189199 (2014).CrossRefGoogle Scholar
Lin, Y., Patel, R., Cao, J., Tu, W., Zhang, H., Bilotti, E., Bastiaansen, C.W.M., and Peijs, T.: Glass-like transparent high strength polyethylene films by tuning drawing temperature. Polymer 171, 180191 (2019).CrossRefGoogle Scholar
Lv, W., Sultana, S., Rohskopf, A., Kalaitzidou, K., and Henry, A.: Graphite-high density polyethylene laminated composites with high thermal conductivity made by filament winding. Express Polym. Lett. 12, 215226 (2018).CrossRefGoogle Scholar
Xu, Y., Kraemer, D., Song, B., Jiang, Z., Zhou, J., Loomis, J., Wang, J., Li, M., Ghasemi, H., Huang, X., Li, X., and Chen, G.: Nanostructured polymer films with metal-like thermal conductivity. Nat. Commun. 10, 1771 (2019).CrossRefGoogle ScholarPubMed
Fujishiro, H., Ikebe, M., Kashima, T., and Yamanaka, A.: Drawing effect on thermal properties of high-strength polyethylene fibers. Jpn. J. Appl. Phys. 37, 19941995 (1998).CrossRefGoogle Scholar
Wang, X., Ho, V., Segalman, R.A., and Cahill, D.G.: Thermal conductivity of high-modulus polymer fibers. Macromolecules 46, 49374943 (2013).CrossRefGoogle Scholar
Takao, T., Yuhara, T., Sakuma, R., Goto, T., and Yamanaka, A.: Evaluating cooling performance of high-thermal-conduction composite in conduction-cooled superconducting coils. IEEE Trans. Appl. Supercond. 20, 21262129 (2010).CrossRefGoogle Scholar
Takao, T., Kawasaki, A., Yamaguchi, M., Yamamoto, H., Niiro, A., Nakamura, K., and Yamanaka, A.: Investigation of cooling effects on conduction cooled HTS tape due to high thermal conduction plastics. IEEE Trans. Appl. Supercond. 13, 17761779 (2003).CrossRefGoogle Scholar
Gosumbonggot, J. and Fujita, G.: Global maximum power point tracking under shading condition and hotspot detection algorithms for photovoltaic systems. Energies 12, 882 (2019).CrossRefGoogle Scholar
Moretón, R., Lorenzo, E., and Narvarte, L.: Experimental observations on hot-spots and derived acceptance/rejection criteria. Sol. Energy 118, 2840 (2015).CrossRefGoogle Scholar
Romano, D., Tops, N., Bos, J., and Rastogi, S.: Correlation between thermal and mechanical response of nascent semicrystalline UHMWPEs. Macromolecules 50, 20332042 (2017).CrossRefGoogle Scholar
Gerrits, N.S.J.A., Young, R.J., and Lemstra, P.J.: Tensile properties of biaxially drawn polyethylene. Polymer 31, 231236 (1990).CrossRefGoogle Scholar
Restrepo-Flórez, J.-M., Bassi, A., and Thompson, M.R.: Microbial degradation and deterioration of polyethylene—A review. Int. Biodeterior. Biodegrad. 88, 8390 (2014).CrossRefGoogle Scholar
Buxadera-Palomero, J., Canal, C., Torrent-Camarero, S., Garrido, B., Javier Gil, F., and Rodríguez, D.: Antifouling coatings for dental implants: Polyethylene glycol-like coatings on titanium by plasma polymerization. Biointerphases 10, 029505 (2015).CrossRefGoogle ScholarPubMed
Frodel, J.L. and Lee, S.: The use of high-density polyethylene implants in facial deformities. Arch. Otolaryngol., Head Neck Surg. 124, 1219 (1998).CrossRefGoogle ScholarPubMed
Ridwan-Pramana, A., Wolff, J., Raziei, A., Ashton-James, C.E., and Forouzanfar, T.: Porous polyethylene implants in facial reconstruction: Outcome and complications. J. Cranio-Maxillofacial Surg. 43, 13301334 (2015).CrossRefGoogle ScholarPubMed
Kyaw, B.M., Champakalakshmi, R., Sakharkar, M.K., Lim, C.S., and Sakharkar, K.R.: Biodegradation of low density polythene (LDPE) by Pseudomonas species. Indian J. Microbiol. 52, 411419 (2012).CrossRefGoogle ScholarPubMed
Muhonja, C.N., Makonde, H., Magoma, G., and Imbuga, M.: Biodegradability of polyethylene by bacteria and fungi from Dandora dumpsite Nairobi-Kenya. PLoS One 13, e0198446 (2018).CrossRefGoogle ScholarPubMed
Bombelli, P., Howe, C.J., and Bertocchini, F.: Polyethylene bio-degradation by caterpillars of the wax moth Galleria mellonella. Curr. Biol. 27, R292R293 (2017).CrossRefGoogle ScholarPubMed
Sivan, A., Szanto, M., and Pavlov, V.: Biofilm development of the polyethylene-degrading bacterium Rhodococcus ruber. Appl. Microbiol. Biotechnol. 72, 346352 (2006).CrossRefGoogle ScholarPubMed
Tokiwa, Y., Calabia, B.P., Ugwu, C.U., and Aiba, S.: Biodegradability of plastics. Int. J. Mol. Sci. 10, 37223742 (2009).CrossRefGoogle ScholarPubMed
Gurunathan, T., Mohanty, S., and Nayak, S.K.: A review of the recent developments in biocomposites based on natural fibres and their application perspectives. Composites, Part A 77, 125 (2015).CrossRefGoogle Scholar
Zhang, Z., Gora-Marek, K., Watson, J.S., Tian, J., Ryder, M.R., Tarach, K.A., López-Pérez, L., Martínez-Triguero, J., and Melián-Cabrera, I.: Recovering waste plastics using shape-selective nano-scale reactors as catalysts. Nat. Sustain. 2, 3942 (2019).CrossRefGoogle Scholar
Boriskina, S.V., Raza, A., Zhang, T., Wang, P., Zhou, L., and Zhu, J.: Nanomaterials for the water-energy nexus. MRS Bull. 44, 5966 (2019).CrossRefGoogle Scholar
Borrelle, S.B., Rochman, C.M., Liboiron, M., Bond, A.L., Lusher, A., Bradshaw, H., and Provencher, J.F.: Opinion: Why we need an international agreement on marine plastic pollution. Proc. Natl. Acad. Sci. U. S. A. 114, 99949997 (2017).CrossRefGoogle ScholarPubMed